scholarly journals A Near-Real-Time Method for Estimating Volcanic Ash Emissions Using Satellite Retrievals

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1573
Author(s):  
Rachel Pelley ◽  
David Thomson ◽  
Helen Webster ◽  
Michael Cooke ◽  
Alistair Manning ◽  
...  

We present a Bayesian inversion method for estimating volcanic ash emissions using satellite retrievals of ash column load and an atmospheric dispersion model. An a priori description of the emissions is used based on observations of the rise height of the volcanic plume and a stochastic model of the possible emissions. Satellite data are processed to give column loads where ash is detected and to give information on where we have high confidence that there is negligible ash. An atmospheric dispersion model is used to relate emissions and column loads. Gaussian distributions are assumed for the a priori emissions and for the errors in the satellite retrievals. The optimal emissions estimate is obtained by finding the peak of the a posteriori probability density under the constraint that the emissions are non-negative. We apply this inversion method within a framework designed for use during an eruption with the emission estimates (for any given emission time) being revised over time as more information becomes available. We demonstrate the approach for the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions. We apply the approach in two ways, using only the ash retrievals and using both the ash and clear sky retrievals. For Eyjafjallajökull we have compared with an independent dataset not used in the inversion and have found that the inversion-derived emissions lead to improved predictions.

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 352 ◽  
Author(s):  
Frances M. Beckett ◽  
Claire S. Witham ◽  
Susan J. Leadbetter ◽  
Ric Crocker ◽  
Helen N. Webster ◽  
...  

It has been 10 years since the ash cloud from the eruption of Eyjafjallajökull caused unprecedented disruption to air traffic across Europe. During this event, the London Volcanic Ash Advisory Centre (VAAC) provided advice and guidance on the expected location of volcanic ash in the atmosphere using observations and the atmospheric dispersion model NAME (Numerical Atmospheric-Dispersion Modelling Environment). Rapid changes in regulatory response and procedures during the eruption introduced the requirement to also provide forecasts of ash concentrations, representing a step-change in the level of interrogation of the dispersion model output. Although disruptive, the longevity of the event afforded the scientific community the opportunity to observe and extensively study the transport and dispersion of a volcanic ash cloud. We present the development of the NAME atmospheric dispersion model and modifications to its application in the London VAAC forecasting system since 2010, based on the lessons learned. Our ability to represent both the vertical and horizontal transport of ash in the atmosphere and its removal have been improved through the introduction of new schemes to represent the sedimentation and wet deposition of volcanic ash, and updated schemes to represent deep moist atmospheric convection and parametrizations for plume spread due to unresolved mesoscale motions. A good simulation of the transport and dispersion of a volcanic ash cloud requires an accurate representation of the source and we have introduced more sophisticated approaches to representing the eruption source parameters, and their uncertainties, used to initialize NAME. Finally, upper air wind field data used by the dispersion model is now more accurate than it was in 2010. These developments have resulted in a more robust modelling system at the London VAAC, ready to provide forecasts and guidance during the next volcanic ash event.


2017 ◽  
Vol 17 (1) ◽  
pp. 47-76 ◽  
Author(s):  
Kay Steinkamp ◽  
Sara E. Mikaloff Fletcher ◽  
Gordon Brailsford ◽  
Dan Smale ◽  
Stuart Moore ◽  
...  

Abstract. A regional atmospheric inversion method has been developed to determine the spatial and temporal distribution of CO2 sinks and sources across New Zealand for 2011–2013. This approach infers net air–sea and air–land CO2 fluxes from measurement records, using back-trajectory simulations from the Numerical Atmospheric dispersion Modelling Environment (NAME) Lagrangian dispersion model, driven by meteorology from the New Zealand Limited Area Model (NZLAM) weather prediction model. The inversion uses in situ measurements from two fixed sites, Baring Head on the southern tip of New Zealand's North Island (41.408° S, 174.871° E) and Lauder from the central South Island (45.038° S, 169.684° E), and ship board data from monthly cruises between Japan, New Zealand, and Australia. A range of scenarios is used to assess the sensitivity of the inversion method to underlying assumptions and to ensure robustness of the results. The results indicate a strong seasonal cycle in terrestrial land fluxes from the South Island of New Zealand, especially in western regions covered by indigenous forest, suggesting higher photosynthetic and respiratory activity than is evident in the current a priori land process model. On the annual scale, the terrestrial biosphere in New Zealand is estimated to be a net CO2 sink, removing 98 (±37) Tg CO2 yr−1 from the atmosphere on average during 2011–2013. This sink is much larger than the reported 27 Tg CO2 yr−1 from the national inventory for the same time period. The difference can be partially reconciled when factors related to forest and agricultural management and exports, fossil fuel emission estimates, hydrologic fluxes, and soil carbon change are considered, but some differences are likely to remain. Baseline uncertainty, model transport uncertainty, and limited sensitivity to the northern half of the North Island are the main contributors to flux uncertainty.


2008 ◽  
Vol 8 (14) ◽  
pp. 3881-3897 ◽  
Author(s):  
S. Eckhardt ◽  
A. J. Prata ◽  
P. Seibert ◽  
K. Stebel ◽  
A. Stohl

Abstract. An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude – thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1–2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.


2008 ◽  
Vol 8 (1) ◽  
pp. 3761-3805 ◽  
Author(s):  
S. Eckhardt ◽  
A. J. Prata ◽  
P. Seibert ◽  
K. Stebel ◽  
A. Stohl

Abstract. An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude – thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (asl), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude and width agree mostly within 1–2 km with CALIPSO observations of stratospheric aerosol produced from the SO2. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.


2017 ◽  
Vol 17 (14) ◽  
pp. 9205-9222 ◽  
Author(s):  
Birthe Marie Steensen ◽  
Arve Kylling ◽  
Nina Iren Kristiansen ◽  
Michael Schulz

Abstract. Significant improvements in the way we can observe and model volcanic ash clouds have been obtained since the 2010 Eyjafjallajökull eruption. One major development has been the application of data assimilation techniques, which combine models and satellite observations such that an optimal understanding of ash clouds can be gained. Still, questions remain regarding the degree to which the forecasting capabilities are improved by inclusion of such techniques and how these improvements depend on the data input. This study explores how different satellite data and different uncertainty assumptions of the satellite and a priori emissions affect the calculated volcanic ash emission estimate, which is computed by an inversion method that couples the satellite retrievals and a priori emissions with dispersion model data. Two major ash episodes over 4 days in April and May of the 2010 Eyjafjallajökull eruption are studied. Specifically, inversion calculations are done for four different satellite data sets with different size distribution assumptions in the retrieval. A reference satellite data set is chosen, and the range between the minimum and maximum 4-day average load of hourly retrieved ash is 121 % in April and 148 % in May, compared to the reference. The corresponding a posteriori maximum and minimum emission sum found for these four satellite retrievals is 26 and 47 % of the a posteriori reference estimate for the same two periods, respectively. Varying the assumptions made in the satellite retrieval is seen to affect the a posteriori emissions and modelled ash column loads, and modelled column loads therefore have uncertainties connected to them depending on the uncertainty in the satellite retrieval. By further exploring our uncertainty estimates connected to a priori emissions and the mass load uncertainties in the satellite data, the uncertainty in the a priori estimate is found in this case to have an order-of-magnitude-greater impact on the a posteriori solution than the mass load uncertainties in the satellite. Part of this is explained by a too-high a priori estimate used in this study that is reduced by around half in the a posteriori reference estimate. Setting large uncertainties connected to both a priori and satellite mass load shows that they compensate each other, but the a priori uncertainty is found to be most sensitive. Because of this, an inversion-based emission estimate in a forecasting setting needs well-tested and well-considered assumptions on uncertainties for the a priori emission and satellite data. The quality of using the inversion in a forecasting environment is tested by adding gradually, with time, more observations to improve the estimated height versus time evolution of Eyjafjallajökull ash emissions. We show that the initially too-high a priori emissions are reduced effectively when using just 12 h of satellite observations. More satellite observations (> 12 h), in the Eyjafjallajökull case, place the volcanic injection at higher altitudes. Adding additional satellite observations (> 36 h) changes the a posteriori emissions to only a small extent for May and minimal for the April period, because the ash is dispersed and transported effectively out of the domain after 1–2 days. A best-guess emission estimate for the forecasting period was constructed by averaging the last 12 h of the a posteriori emission. Using this emission for a forecast simulation leads to better performance, especially compared to model simulations with no further emissions over the forecast period in the case of a continued volcanic eruption activity. Because of undetected ash in the satellite retrieval and diffusion in the model, the forecast simulations generally contain more ash than the observed fields, and the model ash is more spread out. Overall, using the a posteriori emissions in our model reduces the uncertainties in the ash plume forecast, because it corrects effectively for false-positive satellite retrievals, temporary gaps in observations, and false a priori emissions in the window of observation.


2011 ◽  
Vol 11 (9) ◽  
pp. 4333-4351 ◽  
Author(s):  
A. Stohl ◽  
A. J. Prata ◽  
S. Eckhardt ◽  
L. Clarisse ◽  
A. Durant ◽  
...  

Abstract. The April–May, 2010 volcanic eruptions of Eyjafjallajökull, Iceland caused significant economic and social disruption in Europe whilst state of the art measurements and ash dispersion forecasts were heavily criticized by the aviation industry. Here we demonstrate for the first time that large improvements can be made in quantitative predictions of the fate of volcanic ash emissions, by using an inversion scheme that couples a priori source information and the output of a Lagrangian dispersion model with satellite data to estimate the volcanic ash source strength as a function of altitude and time. From the inversion, we obtain a total fine ash emission of the eruption of 8.3 ± 4.2 Tg for particles in the size range of 2.8–28 μm diameter. We evaluate the results of our model results with a posteriori ash emissions using independent ground-based, airborne and space-borne measurements both in case studies and statistically. Subsequently, we estimate the area over Europe affected by volcanic ash above certain concentration thresholds relevant for the aviation industry. We find that during three episodes in April and May, volcanic ash concentrations at some altitude in the atmosphere exceeded the limits for the "Normal" flying zone in up to 14 % (6–16 %), 2 % (1–3 %) and 7 % (4–11 %), respectively, of the European area. For a limit of 2 mg m−3 only two episodes with fractions of 1.5 % (0.2–2.8 %) and 0.9 % (0.1–1.6 %) occurred, while the current "No-Fly" zone criterion of 4 mg m−3 was rarely exceeded. Our results have important ramifications for determining air space closures and for real-time quantitative estimations of ash concentrations. Furthermore, the general nature of our method yields better constraints on the distribution and fate of volcanic ash in the Earth system.


Sign in / Sign up

Export Citation Format

Share Document