scholarly journals One-Dimensional Disordered Bosonic Systems

Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 112
Author(s):  
Chiara D’Errico ◽  
Marco G. Tarallo

Disorder is everywhere in nature and it has a fundamental impact on the behavior of many quantum systems. The presence of a small amount of disorder, in fact, can dramatically change the coherence and transport properties of a system. Despite the growing interest in this topic, a complete understanding of the issue is still missing. An open question, for example, is the description of the interplay of disorder and interactions, which has been predicted to give rise to exotic states of matter such as quantum glasses or many-body localization. In this review, we will present an overview of experimental observations with disordered quantum gases, focused on one-dimensional bosons, and we will connect them with theoretical predictions.

2018 ◽  
Vol 115 (18) ◽  
pp. 4595-4600 ◽  
Author(s):  
Marko Žnidarič ◽  
Marko Ljubotina

Integrable models form pillars of theoretical physics because they allow for full analytical understanding. Despite being rare, many realistic systems can be described by models that are close to integrable. Therefore, an important question is how small perturbations influence the behavior of solvable models. This is particularly true for many-body interacting quantum systems where no general theorems about their stability are known. Here, we show that no such theorem can exist by providing an explicit example of a one-dimensional many-body system in a quasiperiodic potential whose transport properties discontinuously change from localization to diffusion upon switching on interaction. This demonstrates an inherent instability of a possible many-body localization in a quasiperiodic potential at small interactions. We also show how the transport properties can be strongly modified by engineering potential at only a few lattice sites.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 486
Author(s):  
Thomás Fogarty ◽  
Miguel Ángel García-March ◽  
Lea F. Santos ◽  
Nathan L. Harshman

Interacting quantum systems in the chaotic domain are at the core of various ongoing studies of many-body physics, ranging from the scrambling of quantum information to the onset of thermalization. We propose a minimum model for chaos that can be experimentally realized with cold atoms trapped in one-dimensional multi-well potentials. We explore the emergence of chaos as the number of particles is increased, starting with as few as two, and as the number of wells is increased, ranging from a double well to a multi-well Kronig-Penney-like system. In this way, we illuminate the narrow boundary between integrability and chaos in a highly tunable few-body system. We show that the competition between the particle interactions and the periodic structure of the confining potential reveals subtle indications of quantum chaos for 3 particles, while for 4 particles stronger signatures are seen. The analysis is performed for bosonic particles and could also be extended to distinguishable fermions.


Author(s):  
Jesko Sirker

These notes are based on a series of three lectures given at the Les Houches summer school on ’Integrability in Atomic and Condensed Matter Physics’ in August 2018. They provide an introduction into the unusual transport properties of integrable models in the linear response regime focussing, in particular, on the spin-1/21/2 XXZ spin chain.


Author(s):  
Ladislav Šamaj

Introduction to integrable many-body systems IThis is the first volume of a three-volume introductory course about integrable (exactly solvable) systems of interacting bodies. The aim of the course is to derive and analyze, on an elementary mathematical and physical level, the Bethe ansatz solutions, ground-state properties and the thermodynamics of integrable many-body systems in many domains of physics: Nonrelativistic one-dimensional continuum Fermi and Bose gases; One-dimensional quantum models of condensed matter physics like the Heisenberg, Hubbard and Kondo models; Relativistic models of the (1+1)-dimensional Quantum Field Theory like the Luttinger model, the sine-Gordon model and its fermionic analog the Thirring model; Two-dimensional classical models, especially the symmetric Coulomb gas. In the first part of this volume, we deal with nonrelativistic one-dimensional continuum Fermi and Bose quantum gases of spinless (identical) particles with specific types of pairwise interactions like the short-range δ-function and hard-core interactions, and the long-range 1/


2006 ◽  
Vol 20 (19) ◽  
pp. 2595-2602
Author(s):  
JOHN CARDY

Recently there has been developed a new approach to the study of critical quantum systems in 1+1 dimensions which reduces them to problems in one-dimensional Brownian motion. This goes under the name of stochastic, or Schramm, Loewner Evolution (SLE). I review some of the recent progress in this area, from the point of view of many-body theory. Connections to random matrices also emerge.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Piotr Sierant ◽  
Krzysztof Biedroń ◽  
Giovanna Morigi ◽  
Jakub Zakrzewski

We show that a one-dimensional Hubbard model with all-to-all coupling may exhibit many-body localization in the presence of local disorder. We numerically identify the parameter space where many-body localization occurs using exact diagonalization and finite-size scaling. The time evolution from a random initial state exhibits features consistent with the localization picture. The dynamics can be observed with quantum gases in optical cavities, localization can be revealed through the time-dependent dynamics of the light emitted by the resonator.


2010 ◽  
Vol 105 (1) ◽  
Author(s):  
H.-P. Stimming ◽  
N. J. Mauser ◽  
J. Schmiedmayer ◽  
I. E. Mazets

Author(s):  
C. D'Errico ◽  
S. Scaffidi Abbate ◽  
G. Modugno

Quantum phase slips (QPS) are the primary excitations in one-dimensional superfluids and superconductors at low temperatures. They have been well characterized in most condensed-matter systems, and signatures of their existence have been recently observed in superfluids based on quantum gases too. In this review, we briefly summarize the main results obtained on the investigation of phase slips from superconductors to quantum gases. In particular, we focus our attention on recent experimental results of the dissipation in one-dimensional Bose superfluids flowing along a shallow periodic potential, which show signatures of QPS. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.


Sign in / Sign up

Export Citation Format

Share Document