scholarly journals General Properties on Differential Sets of a Graph

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 265
Author(s):  
Ludwin A. Basilio ◽  
Sergio Bermudo ◽  
Juan C. Hernández-Gómez ◽  
José M. Sigarreta

Let G=(V,E) be a graph, and let β∈R. Motivated by a service coverage maximization problem with limited resources, we study the β-differential of G. The β-differential of G, denoted by ∂β(G), is defined as ∂β(G):=max{|B(S)|−β|S|suchthatS⊆V}. The case in which β=1 is known as the differential of G, and hence ∂β(G) can be considered as a generalization of the differential ∂(G) of G. In this paper, upper and lower bounds for ∂β(G) are given in terms of its order |G|, minimum degree δ(G), maximum degree Δ(G), among other invariants of G. Likewise, the β-differential for graphs with heavy vertices is studied, extending the set of applications that this concept can have.

2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Ke Liu ◽  
Mei Lu

Let $H=(V,F)$ be a simple hypergraph without loops. $H$ is called linear if $|f\cap g|\le 1$ for any $f,g\in F$ with $f\not=g$. The $2$-section of $H$, denoted by $[H]_2$, is a graph with $V([H]_2)=V$ and for any $ u,v\in V([H]_2)$, $uv\in E([H]_2)$ if and only if there is $ f\in F$ such that $u,v\in f$. The treewidth of a graph is an important invariant in structural and algorithmic graph theory. In this paper, we consider the treewidth of the $2$-section of a linear hypergraph. We will use the minimum degree, maximum degree, anti-rank and average rank of a linear hypergraph to determine the upper and lower bounds of the treewidth of its $2$-section. Since for any graph $G$, there is a linear hypergraph $H$ such that $[H]_2\cong G$, we provide a method to estimate the bound of treewidth of graph by the parameters of the hypergraph.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1711
Author(s):  
Zhao Wang ◽  
Yaping Mao ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Building upon the notion of the Gutman index SGut(G), Mao and Das recently introduced the Steiner Gutman index by incorporating Steiner distance for a connected graph G. The Steiner Gutman k-index SGutk(G) of G is defined by SGutk(G)=∑S⊆V(G),|S|=k∏v∈SdegG(v)dG(S), in which dG(S) is the Steiner distance of S and degG(v) is the degree of v in G. In this paper, we derive new sharp upper and lower bounds on SGutk, and then investigate the Nordhaus-Gaddum-type results for the parameter SGutk. We obtain sharp upper and lower bounds of SGutk(G)+SGutk(G¯) and SGutk(G)·SGutk(G¯) for a connected graph G of order n, m edges, maximum degree Δ and minimum degree δ.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2091-2099
Author(s):  
Shuya Chiba ◽  
Yuji Nakano

In 2008, Alspach [The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20] defined the matching sequencibility of a graph G to be the largest integer k such that there exists a linear ordering of its edges so that every k consecutive edges in the linear ordering form a matching of G, which is denoted by ms(G). In this paper, we show that every graph G of size q and maximum degree ? satisfies 1/2?q/?+1? ? ms(G) ? ?q?1/??1? by using the edge-coloring of G, and we also improve this lower bound for some particular graphs. We further discuss the relationship between the matching sequencibility and a conjecture of Seymour about the existence of the kth power of a Hamilton cycle.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1097 ◽  
Author(s):  
Álvaro Martínez-Pérez ◽  
José M. Rodríguez

Topological indices are useful for predicting the physicochemical behavior of chemical compounds. A main problem in this topic is finding good bounds for the indices, usually when some parameters of the graph are known. The aim of this paper is to use a unified approach in order to obtain several new inequalities for a wide family of topological indices restricted to trees and to characterize the corresponding extremal trees. The main results give upper and lower bounds for a large class of topological indices on trees, fixing or not the maximum degree. This class includes the first variable Zagreb, the Narumi–Katayama, the modified Narumi–Katayama and the Wiener index.


2011 ◽  
Vol Vol. 13 no. 2 (Graph and Algorithms) ◽  
Author(s):  
David R. Wood

Graphs and Algorithms International audience We prove upper and lower bounds on the chromatic number of the square of the cartesian product of trees. The bounds are equal if each tree has even maximum degree.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1438 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Dorota Kuziak ◽  
Iztok Peterin ◽  
Ismael G. Yero

Given a graph G without isolated vertices, a total Roman dominating function for G is a function f:V(G)→{0,1,2} such that every vertex u with f(u)=0 is adjacent to a vertex v with f(v)=2, and the set of vertices with positive labels induces a graph of minimum degree at least one. The total Roman domination number γtR(G) of G is the smallest possible value of ∑v∈V(G)f(v) among all total Roman dominating functions f. The total Roman domination number of the direct product G×H of the graphs G and H is studied in this work. Specifically, several relationships, in the shape of upper and lower bounds, between γtR(G×H) and some classical domination parameters for the factors are given. Characterizations of the direct product graphs G×H achieving small values (≤7) for γtR(G×H) are presented, and exact values for γtR(G×H) are deduced, while considering various specific direct product classes.


2017 ◽  
Vol 37 (2) ◽  
pp. 51-58
Author(s):  
Suresh Elumalai ◽  
Toufik Mansour ◽  
Mohammad Ali Rostami ◽  
Gnanadhass Britto Antony Xavier

In this paper, we present and analyze the upper and lower bounds on the Hyper Zagreb index $\chi^2(G)$ of graph $G$ in terms of the number of vertices $(n)$, number of edges $(m)$, maximum degree $(\Delta)$, minimum degree $(\delta)$ and the inverse degree $(ID(G))$. In addition, we give a counter example on the upper bound  of the second Zagreb index for Theorems 2.2 and  2.4 from \cite{ranjini}. Finally, we present lower and upper bounds on $\chi^2(G)+\chi^2(\overline G)$, where $\overline G$ denotes the complement of $G$.


10.37236/6267 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Tim E. Wilson ◽  
David R. Wood

An anagram is a word of the form $WP$ where $W$ is a non-empty word and $P$ is a permutation of $W$. We study anagram-free graph colouring and give bounds on the chromatic number. Alon et al.[Random Structures & Algorithms 2002] asked whether anagram-free chromatic number is bounded by a function of the maximum degree. We answer  this question in the negative by constructing graphs with maximum degree 3 and unbounded anagram-free chromatic number. We also prove upper and lower bounds on the anagram-free chromatic number of trees in terms of their radius and pathwidth. Finally, we explore extensions to edge colouring and $k$-anagram-free colouring.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Sign in / Sign up

Export Citation Format

Share Document