scholarly journals Biomechanical Role and Motion Contribution of Ligaments and Bony Constraints in the Elbow Stability: A Preliminary Study

2019 ◽  
Vol 6 (3) ◽  
pp. 68 ◽  
Author(s):  
Elisa Panero ◽  
Laura Gastaldi ◽  
Mara Terzini ◽  
Cristina Bignardi ◽  
Arman Sard ◽  
...  

In flexion–extension motion, the interaction of several ligaments and bones characterizes the elbow joint stability. The aim of this preliminary study was to quantify the relative motion of the ulna with respect to the humerus in two human upper limbs specimens and to investigate the constraints role for maintaining the elbow joint stability in different section conditions. Two clusters of four markers were fixed respectively to the ulna and humerus, and their trajectory was recorded by a motion capture system during functional orthopedic maneuver. Considering the posterior bundle of medial collateral complex (pMUCL) and the coronoid, two section sequences were executed. The orthopedic maneuver of compression, pronation and varus force was repeated at 30°, 60° and 90° flexion for the functional investigation of constraints. Ulna deflection was compared to a baseline elbow flexion condition. With respect to the intact elbow, the coronoid osteotomy influences the elbow stability at 90° (deflection = 11.49 ± 17.39 mm), while small differences occur at 30° and 60°, due to ligaments constraint. The contemporary pMUCL section and coronoid osteotomy causes elbow instability, with large deflection at 30° (deflection = 34.40 ± 9.10 mm), 60° (deflection = 45.41 ± 18.47 mm) and 90° (deflection = 52.16 ± 21.92 mm). Surgeons may consider the pMUCL reconstruction in case of unfixable coronoid fracture.

1998 ◽  
Vol 02 (01) ◽  
pp. 45-54 ◽  
Author(s):  
Shinji Tanaka ◽  
Kai-Nan An ◽  
Bernard F. Morrey

Three-dimensional kinematics of the ulnohumeral joint under simulated active elbow joint flexion-extension was obtained by using an electromagnetic tacking device. The joint motion was analyzed based on Eulerian angle description. In order to minimize the effect of "downstream cross-talk" on calculation of the three Eulerian angles, an optimal axis to best represent flexion-extension of the elbow joint was established. This axis, on average, is close to the line joining the centers of the capitellum and the trochlear groove. Furthermore, joint laxity under valgus-varus stress was also examined. With the weight of the forearm as the stress, maximums of 7.6° valgus-varus laxity and 5.3° axial rotation laxity were observed within a range of elbow flexion. The results of this study provide useful baseline information on joint laxity for the evaluation of elbow joints with implant replacements and other surgical treatment modalities.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Danial Sharifi Kia ◽  
Ryan Willing

Much of our understanding of the role of elbow ligaments to overall joint biomechanics has been developed through in vitro cadaver studies using joint motion simulators. The principle of superposition can be used to indirectly compute the force contributions of ligaments during prescribed motions. Previous studies have analyzed the contribution of different soft tissue structures to the stability of human elbow joints, but have limitations in evaluating the loads sustained by those tissues. This paper introduces a unique, hybrid experimental-computational technique for measuring and simulating the biomechanical contributions of ligaments to elbow joint kinematics and stability. in vitro testing of cadaveric joints is enhanced by the incorporation of fully parametric virtual ligaments, which are used in place of the native joint stabilizers to characterize the contribution of elbow ligaments during simple flexion–extension (FE) motions using the principle of superposition. Our results support previously reported findings that the anterior medial collateral ligament (AMCL) and the radial collateral ligament (RCL) are the primary soft tissue stabilizers for the elbow joint. Tuned virtual ligaments employed in this study were able to restore the kinematics and laxity of elbows to within 2 deg of native joint behavior. The hybrid framework presented in this study demonstrates promising capabilities in measuring the biomechanical contribution of ligamentous structures to joint stability.


2020 ◽  
Author(s):  
Guangming Xu ◽  
ZhengZhong Yang ◽  
JiYong Yang ◽  
Ziyang Liang ◽  
wei Li

Abstract ObjectiveTo investigate the biomechanical effects of different flexion angles of the annular ligament on elbow joint stability. MethodsLeft elbow CT and MRI scans were chosen from a healthy volunteer, according to a previous research model. A cartilage and ligament model was constructed with SolidWorks software according to the MRI results to simulate the annular ligament during normal, loosen, and rupture conditions at different buckling angles (0, 30, 60, 90, 120). In 15 elbow models, boundary conditions were set according to the literature. The different elbow 3D finite element models were imported into ABAQUS software to calculate and analyze the load, contact area, contact stress and stress of the medial collateral ligament of the olecranon cartilage. Results1. According to the analysis results, olecranon cartilage stress values when the annular ligament under different conditions(normal、loosened、ruptured)with elbow extension, were 2.1 ± 0.18, 2.4 ± 0.75, and 2.9 ± 0.94 MPa. As the buckling angle increased, the stress value decreased; with 120 degrees of elbow flexion, the minimum stress values were 0.9 ± 0.12, 1.1 ± 0.38, and 1.2 ± 0.29 MPa. 2. When the contact surface of the olecranon cartilage was flexed from 0 to 30 degrees, the olecranon cartilage contact area significantly increased, reaching a maximum value of 254±5.35 mm, and then the contact area gradually decreased, reaching a minimum value of 176±2.62 mm when the elbow joint was flexed to 120 degrees. The results when the annular ligament was loosened and ruptured were different from those of the normal annular ligament. The maximum values were 283±4.74and 312±5.49mm at 60 degrees of elbow flexion. The contact area gradually decreased with an increase in the angle, and the minimum values were 210±3.82 and 236±6.59 mm at 120 degrees of elbow flexion. 3. When the elbow joint was extended, the maximum stress of the medial collateral ligament was 6.5±0.23, 11.5±0.78 and 18.7±0.94 MPa under different states; as the stress decreased with an increase in the angle, the corresponding values were 2.8±0.18, 4.8±0.56 and 6.2±0.72 MPa at 120 degrees of elbow flexion. ConclusionThe annular ligament plays an important role in maintaining elbow joint stability. When the annular ligament ruptures, it should be reconstructed as much as possible to avoid the elevation of stress on the surface of the medial collateral ligament of the elbow and on the annular cartilage, which may cause clinical symptoms.


2020 ◽  
Vol 14 (1) ◽  
pp. 95-99
Author(s):  
Saif Ul Islam ◽  
Alexander Glover ◽  
Robert J MacFarlane ◽  
Nisarg Mehta ◽  
Mohammad Waseem

A sound knowledge of the elbow anatomy and biomechanics is critical to understanding the pathology of various elbow disorders and instigating appropriate management. The elbow joint is a trochoginglymoid joint: that is, it has flexion-extension [ginglymoid] motion at the ulnohumeral and radiocapitellar articulations and pronation and supination [trochoid] motion at the proximal radioulnar joint. Stability of the elbow joint is achieved through static and dynamic components. The aim of this article is to concisely describe the anatomy and biomechanics of the elbow joint relevant to the practice of trauma and orthopaedic surgeons.


2018 ◽  
Vol 13 (5) ◽  
pp. 643-648 ◽  
Author(s):  
Kane J Middleton ◽  
Denny JM Wells ◽  
Daryl H Foster ◽  
Jacqueline A Alderson

Cricket bowlers must be able to deliver the ball with less than 15° of elbow extension or face suspension. The aim of this case study was to report the findings of a technique remediation programme on the elbow joint kinematics of an international cricket bowler. The bowler underwent a three-dimensional bowling analysis to measure his elbow joint kinematics before and after a technique remediation programme. The bowler was required to bowl six deliveries of each of his off-break, quicker and doosra variations. The remediation programme focussed on modifying the bowler’s run-up, shoulder alignment and ball/hand position at back foot impact. Elbow joint waveform data were analysed using statistical parametric mapping tests and coefficient of multiple determination. Elbow flexion–extension angles at discrete events were compared pre- and post-remediation using paired-sample t-tests. Results showed that the remediation programme was effective in reducing the amount of elbow flexion, particularly in the first 60% of the delivery cycle. Elbow extension range was significantly lower post-remediation for the off-break and quicker deliveries. It was concluded that basic short-term technique remediation can be effective in reducing elbow extension range.


Author(s):  
Pablo Delgado ◽  
Thisath Attampola Arachchige Don ◽  
Jesus Gomez ◽  
Virgil Miranda ◽  
Yimesker Yihun

Abstract In this study, a methodology for designing a task-based exoskeleton which can recreate the end-effector trajectory of a given limb during a rehablitation task/movement is presented. The exoskeleton provides an option to replace traditional jointbased exoskeleton joints, which often have alignment issues with the biological joint. The proper fit of the exoskeleton to the user and task are research topics to reduce pain or joint injuries as well as for the execution of the task. The proposed task-based synthesis method was successfully applied to generate the 3D motions of the elbow flexion and extensions using a one degree of freedom (DOF), spatial four-bar mechanism. The elbow joint is analyzed through motion capture system to develop the bio-exoskeleton. The resulted exoskeleton does not need to align with the corresponding limb joint to generate the desired anatomical motion.


2020 ◽  
Vol 32 (01) ◽  
pp. 2050006
Author(s):  
Yahya Z. Yahya ◽  
Zaid H. Al-Sawaff

This paper presents a design and model of a powered elbow exoskeleton to assist the movement of elbow joint. This exoskeleton will strengthen the elbow joint by providing a controllable torque in addition to that generated by elbow joint muscles. Therefore, it can be used for healthy people and for physically weak people, such as disabled or elderly people, in performing their daily activities. The proposed design focuses on using EMG signals recorded from biceps and triceps muscles (which are responsible for elbow joint movements) to control the exoskeleton in performing elbow flexion/extension. The EMG signals and elbow flexion angle were recorded from four healthy subjects whilst performing different tasks of elbow flexion/extension. Pre-processing and conditioning of EMG signals were performed by system hardware while MATLAB/Simulink was used for further signal processing and for designing the whole system of arm and exoskeleton. EMG signals from biceps and triceps muscles were used as reference inputs to the model giving the intended motion. In the design, the parameters of the components, such as the DC motor, gear box and conditioning circuits, were taken from available (off the shelf) cheap components to make it easy and cheap to implement the proposed exoskeleton. In addition, all the torques: the forearm and exoskeleton torques and the torque generated by the muscles, were taken into consideration in the design for being as close as possible to the practice. Future work will be to develop a prototype to implement the proposed design.


1996 ◽  
Vol 118 (1) ◽  
pp. 32-40 ◽  
Author(s):  
R. V. Gonzalez ◽  
E. L. Hutchins ◽  
R. E. Barr ◽  
L. D. Abraham

This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and joint position. Musculotendon parameters were determined for each actuator and verified by comparing analytical moment-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic (rapid-directed) elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and to determine the effects of forearm and elbow position on the recruitment of individual muscles during a variety of ballistic movements. The model was partially verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing both isometric and ballistic elbow joint complex movements. This verification lends credibility to the time-varying muscle force predictions and the recruitment of muscles that contribute to both elbow flexion-extension and forearm pronation-supination.


2017 ◽  
Vol 33 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Melissa M.B. Morrow ◽  
Bethany Lowndes ◽  
Emma Fortune ◽  
Kenton R. Kaufman ◽  
M. Susan Hallbeck

The purpose of this study was to validate a commercially available inertial measurement unit (IMU) system against a standard lab-based motion capture system for the measurement of shoulder elevation, elbow flexion, trunk flexion/extension, and neck flexion/extension kinematics. The validation analyses were applied to 6 surgical faculty members performing a standard, simulated surgical training task that mimics minimally invasive surgery. Three-dimensional joint kinematics were simultaneously recorded by an optical motion capture system and an IMU system with 6 sensors placed on the head, chest, and bilateral upper and lower arms. The sensor-to-segment axes alignment was accomplished manually. The IMU neck and trunk IMU flexion/extension angles were accurate to within 2.9 ± 0.9 degrees and 1.6 ± 1.1°, respectively. The IMU shoulder elevation measure was accurate to within 6.8 ± 2.7° and the elbow flexion measure was accurate to within 8.2 ± 2.8°. In the Bland-Altman analyses, there were no significant systematic errors present; however, there was a significant inversely proportional error across all joints. As the gold standard measurement increased, the IMU underestimated the magnitude of the joint angle. This study reports acceptable accuracy of a commercially available IMU system; however, results should be interpreted as protocol specific.


Sign in / Sign up

Export Citation Format

Share Document