scholarly journals Dual Network Composites of Poly(vinyl alcohol)-Calcium Metaphosphate/Alginate with Osteogenic Ions for Bone Tissue Engineering in Oral and Maxillofacial Surgery

2021 ◽  
Vol 8 (8) ◽  
pp. 107
Author(s):  
Lilis Iskandar ◽  
Lucy DiSilvio ◽  
Jonathan Acheson ◽  
Sanjukta Deb

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.

2016 ◽  
Vol 144 ◽  
pp. 17-29 ◽  
Author(s):  
Sugandha Chahal ◽  
Fathima Shahitha Jahir Hussain ◽  
Anuj Kumar ◽  
Mohammad Syaiful Bahari Abdull Rasad ◽  
Mashitah Mohd Yusoff

Author(s):  
I. A Stamboliev ◽  
Julia Vladimirovna Gazhva ◽  
S. G Ivashkevich ◽  
V. M Ryabova

This article discusses the modern approaches of bone tissue engineering in oral and maxillofacial surgery for repair of bone integrity. Describes the new biomaterials in bone tissue engineering, complex scaffolds containing MSC for bone repair of large and critical bone defects, the criteria for selecting biomaterial scaffolds, as well as their positive and negative properties.


Author(s):  
Masud Rana Md. ◽  
Naznin Akhtar ◽  
Zahid Hasan Md. ◽  
Asaduzzaman S M

Bone tissue engineering with cells and synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissue compared with the transplantation of bone. Hydroxyapatite (HA) and its composite with biopolymer are extensively developed and applied in bone tissue regeneration. The main aim of this study was to fabricate and characterize of HA apatite based biocompatible scaffold for bone tissue engineering. Scaffolds with different ratio of polymers (chitosan & alginate), and fixed amount of synthetic HA were prepared using in situ co precipitation method and mineral to polymer ratio was 1:1 to 1: 2 . A cross linker agent, 2-Hydroxylmethacrylate (HEMA) was added at different percentage (0.5-2%) into the selected composition and irradiated at 5- 25 kGy to optimize the proper mixing of components at the presence of HEMA. Fabricated scaffolds were analyzed to determine porosity, density, biodegradability, morphology and structural properties. Porosity and density of the prepared scaffold were 75 to 92% and 0.21 to 0.42 g/cm3 respectively. However, the swelling ratio of the fabricated scaffolds was ranged from 133 to 197%. Nonetheless, there had a reasonable in-vitro degradation of prepared scaffolds. Flourier transform infrared spectroscopy (FTIR) analysis showed intermolecular interaction between components in the scaffold. Pore size of scaffold was measured by scanning electron microscope and the value was 162-510 μm. It could be proposed that this scaffold fulfills all the main requirements to be considered as a bone substitute for biomedical application in near future.


2010 ◽  
Vol 7 (suppl_5) ◽  
Author(s):  
Yuelian Liu ◽  
Gang Wu ◽  
Klaas de Groot

The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing attention. Bone-inducing agents have been locally injected to stimulate the native bone-formation activity, but without much success. The reason is that these drugs must be delivered slowly and at a low concentration to be effective. This then mimics the natural method of cytokine release. For this purpose, a suitable vehicle was developed, the so-called biomimetic coating, which can be deposited on metal implants as well as on biomaterials. Materials that are currently used to fill bony defects cannot by themselves trigger bone formation. Therefore, biological functionalization of such materials by the biomimetic method resulted in a novel biomimetic coating onto different biomaterials. Bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic coating can be a solution for a large bone defect repair in the fields of dental implantology, maxillofacial surgery and orthopaedics. Here, we review the performance of the biomimetic coating both in vitro and in vivo .


Author(s):  
Sergio Andres Pineda Castillo ◽  
Cristian Camilo Bernal Lopez ◽  
Favio Andres Tovar Araujo ◽  
Andres Bernal-Ballen ◽  
Hugo Ramiro Segura-Puello ◽  
...  

2016 ◽  
Vol 42 (1) ◽  
pp. 1530-1537 ◽  
Author(s):  
Liga Stipniece ◽  
Inga Narkevica ◽  
Marina Sokolova ◽  
Janis Locs ◽  
Jurijs Ozolins

2018 ◽  
Vol 106 (4) ◽  
pp. 1111-1120 ◽  
Author(s):  
Mohammad Saied Enayati ◽  
Tayebeh Behzad ◽  
Pawel Sajkiewicz ◽  
Mohammad Rafienia ◽  
Rouhollah Bagheri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document