scholarly journals Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs

Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 167
Author(s):  
Jaana Künnapuu ◽  
Honey Bokharaie ◽  
Michael Jeltsch

Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph­angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the “mature” growth factors, which differ in affinity and receptor activation potential. The “default” VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer.

Author(s):  
Jaana Künnapuu ◽  
Hanieh Bokharaie ◽  
Michael Jeltsch

Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph­angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. The activating cleavage of VEGF-C is mediated by at least five different proteases: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the "mature" growth factors, which differ in affinity and receptor activation potential. The “default” VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by different proteases. During embryonic development, ADAMTS3 activates VEGF-C. In contrast, thrombin and plasmin likely activate VEGF-C/-D during tissue injury-induced lymphangiogenesis, and PSA and cathepsin D perhaps during tumor-associated pathological lymphangio­genesis. Additionally, cathepsin D from saliva might activate latent VEGF-C/-D upon wound licking, thereby accelerating healing. Similar to tyrosine kinase receptors and VEGFs themselves, these activating proteases could be targeted to modulate angiogenesis and lymphangiogenesis in relevant diseases.


2021 ◽  
Vol 22 (24) ◽  
pp. 13545
Author(s):  
Hannu Koistinen ◽  
Jaana Künnapuu ◽  
Michael Jeltsch

In this focused review, we address the role of the kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen (PSA), in the regulation of angiogenesis. Early studies suggest that KLK3 is able to inhibit angiogenic processes, which is most likely dependent on its proteolytic activity. However, more recent evidence suggests that KLK3 may also have an opposite role, mediated by the ability of KLK3 to activate the (lymph)angiogenic vascular endothelial growth factors VEGF-C and VEGF-D, further discussed in the review.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Magdalena Białas ◽  
Grzegorz Dyduch ◽  
Joanna Dudała ◽  
Monika Bereza-Buziak ◽  
Alicja Hubalewska-Dydejczyk ◽  
...  

Angiogenesis (neoangiogenesis), a process of neovascularization, is an essential step for local tumor growth and distant metastasis formation. We have analysed angiogenesis status: vascular architecture, microvessel density, and vascular endothelial growth factors expression in 62 adrenal pheochromocytomas: 57 benign and 5 malignant. Immunohistochemical evaluation revealed that vascular architecture and vessel density are different in the central and subcapsular areas of the tumor. Furthermore, we have observed a strong correlation between number of macrophages and microvessel density in the central and subcapsular areas of the tumor and between the expression of VEGF-A in tumor cells and microvessel density in central and subcapsular areas of the tumor. Secondary changes in these tumors influence the results and both vascular architecture and microvessel density are markedly disturbed by hemorrhagic and cystic changes in pheochromocytomas. These changes are partially caused by laparoscopic operation technique. However, no differences in vascular parameters were found between pheochromocytomas with benign and malignant clinical behavior. Our observation showed that analysis of angiogenesis, as a single feature, does not help in differentiating malignant and benign pheochromocytomas and has no independent prognostic significance. On the other hand, high microvessel density in pheochromocytoma is a promising factor for antiangiogenic therapy in malignant cases.


2012 ◽  
Vol 9 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Brandon P. Verdoorn ◽  
Changyong Feng ◽  
William A. Ricke ◽  
Deepak M. Sahasrabudhe ◽  
Deepak Kilari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document