scholarly journals Computational Insights into the Unfolding of a Destabilized Superoxide Dismutase 1 Mutant

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1240
Author(s):  
Stepan Timr ◽  
Fabio Sterpone

In this work, we investigate the β-barrel of superoxide dismutase 1 (SOD1) in a mutated form, the isoleucine 35 to alanine (I35A) mutant, commonly used as a model system to decipher the role of the full-length apoSOD1 protein in amyotrophic lateral sclerosis (ALS). It is known from experiments that the mutation reduces the stability of the SOD1 barrel and makes it largely unfolded in the cell at 37 degrees Celsius. We deploy state-of-the-art computational machinery to examine the thermal destabilization of the I35A mutant by comparing two widely used force fields, Amber a99SB-disp and CHARMM36m. We find that only the latter force field, when combined with the Replica Exchange with Solute Scaling (REST2) approach, reproduces semi-quantitatively the experimentally observed shift in the melting between the original and the mutated SOD1 barrel. In addition, we analyze the unfolding process and the conformational landscape of the mutant, finding these largely similar to those of the wildtype. Nevertheless, we detect an increased presence of partially misfolded states at ambient temperatures. These states, featuring conformational changes in the region of the β-strands β4−β6, might provide a pathway for nonnative aggregation.

2014 ◽  
Vol 289 (44) ◽  
pp. 30690-30701 ◽  
Author(s):  
Fernando R. Coelho ◽  
Asif Iqbal ◽  
Edlaine Linares ◽  
Daniel F. Silva ◽  
Filipe S. Lima ◽  
...  

The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1WT and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp32 residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp32 residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1WT and hSOD1G93A mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp32 residue in the process. The results showed that Trp32 residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp32 residue (bovine SOD1 and hSOD1W32F mutant). The results support a role for the oxidation products of the hSOD1-Trp32 residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1.


2011 ◽  
Vol 121 (5) ◽  
pp. 623-634 ◽  
Author(s):  
Karin Forsberg ◽  
Peter M. Andersen ◽  
Stefan L. Marklund ◽  
Thomas Brännström

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e99879 ◽  
Author(s):  
Jeffrey S. Deitch ◽  
Guillermo M. Alexander ◽  
Andrew Bensinger ◽  
Steven Yang ◽  
Juliann T. Jiang ◽  
...  

2013 ◽  
Vol 24 (1) ◽  
pp. 1-9 ◽  
Author(s):  
D. Bjerre ◽  
L. B. Madsen ◽  
T. Mark ◽  
S. Cirera ◽  
K. Larsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document