scholarly journals A Novel Vitronectin Peptide Facilitates Differentiation of Oligodendrocytes from Human Pluripotent Stem Cells (Synthetic ECM for Oligodendrocyte Differentiation)

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1254
Author(s):  
Won Ung Park ◽  
Gyu-Bum Yeon ◽  
Myeong-Sang Yu ◽  
Hui-Gwan Goo ◽  
Su-Hee Hwang ◽  
...  

Differentiation of oligodendrocytes (ODs) presents a challenge in regenerative medicine due to their role in various neurological diseases associated with dysmyelination and demyelination. Here, we designed a peptide derived from vitronectin (VN) using in silico docking simulation and examined its use as a synthetic substrate to support the differentiation of ODs derived from human pluripotent stem cells. The designed peptide, named VNP2, promoted OD differentiation induced by the overexpression of SOX10 in OD precursor cells compared with Matrigel and full-length VN. ODs differentiated on VNP2 exhibited greater contact with axon-mimicking nanofibers than those differentiated on Matrigel. Transcriptomic analysis revealed that the genes associated with morphogenesis, cytoskeleton remodeling, and OD differentiation were upregulated in cells grown on VNP2 compared with cells grown on Matrigel. This new synthetic VN-derived peptide can be used to develop a culture environment for efficient OD differentiation.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1474-1474
Author(s):  
Satish Medicetty ◽  
Mariusz Z Ratajczak ◽  
Magdalena J Kucia ◽  
Ewa K. Zuba-Surma ◽  
Izabela Klich ◽  
...  

Abstract Abstract 1474 Poster Board I-497 We previously demonstrated that human cord blood contains a population of small (smaller in size than erythrocytes) CXCR4+CD133+CD34+SSEA-4+Oct-4+lin−CD45− cells (Leukemia 2007:21;297-303) and that these cells are mobilized into peripheral blood during tissue organ damage as seen for example in heart infarct (J. Am. Coll. Cardiol., 2009:53;1-9.) or stroke (Stroke. 2009:40;1237.). Similar cells were also reported in murine organs, and more importantly we described that these cells may differentiate in vitro into cells from all three germ layers (Leukemia 2006:20;857–869). To explore the possibility that human VSELs could become a source of pluripotent stem cells in regenerative medicine, our goal was to develop an efficient strategy to isolate these cells from adult patients. To test if VSELs similarly to their murine counterparts could be mobilized into peripheral blood after granulocyte colony stimulating factor (G-CSF) injection (Stem Cells 2008:26;2083-2092), we enrolled a group of young healthy donors who were mobilized for two consecutive days using G-CSF (480 μg/day subcutaneously). On the third day nucleated cells (TNC) were collected by apheresis. We evaluated number of VSELs in peripheral blood (PB) samples before and after G-CSF mobilization as well as the final number in the apheresis product. At least 1 million of TNC were acquired and analyzed by FACS Diva software. Three different fractions of non-hematopoietic stem cells enriched for VSELs (Lin−/CD45−/CD133+, Lin−/CD45−/CD34+, Lin−/CD45−/CXCR4+) as well as their CD45 positive hematopoietic counterparts were analyzed. The absolute numbers of cells from each population, contained in 1 μL of sample, were computed based on percent content of each population and TNC count for each individual sample. Results show that after G-CSF mobilization, human peripheral blood contains a population of lin− CD45− mononuclear cells that express CXCR4, CD34 and CD133 antigens. These lin− CD45− CXCR4+ CD133+ CD34+ cells are highly enriched for mRNA for intra-nuclear pluripotent embryonic transcription factors such as Oct-4, Sox2 and Nanog. More importantly we found that Oct-4 was expressed in nuclei of mobilized VSELs and that these cells also express the cell surface marker SSEA-4, the early embryonic glycolipid antigen commonly used as a marker for undifferentiated pluripotent human embryonic stem cells. We observed that these adult peripheral blood-derived VSELs are slightly larger than their counterparts identified in adult murine bone marrow, but are still very small. In addition, they also possess large nuclei containing embryonic-type unorganized euchromatin. Before G-CSF mobilization only very few VSELs were detectable in peripheral blood, whereas following G-CSF induced mobilization there was a very significant increase with in excess of 106 VSELs present in the apheresis product representing less than 0.01% of TNC. We postulate that while VSELs are relatively rare cells, they are mobilized into peripheral blood and that G-CSF induced mobilization could become a novel strategy to obtain human pluripotent stem cells for regenerative medicine. Disclosures: Medicetty: NeoStem Inc: Employment, Equity Ownership. Marasco: NeoStem Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Rodgerson: NeoStem Inc: Employment, Equity Ownership.


2021 ◽  
Author(s):  
Maria Santos Cruz ◽  
Meng Li

Cortical interneurons are GABAergic inhibitory cells that connect locally in the neocortex and play a  pivotal role in shaping cortical network activities. Dysfunction of these cells is believed to lead to runaway excitation underlying seizure-based diseases, such as epilepsy, autism, and schizophrenia. There is a growing interest in using cortical interneurons derived from human pluripotent stem cells for understanding their complex development and for modeling neuropsychiatric diseases. Here, we report the identification of a novel role of TGFβ signaling in modulating interneuron progenitor maintenance and neuronal differentiation. TGFβ signaling inhibition suppresses terminal differentiation of interneuron progenitors while exogenous TGFβ3 accelerates the transition of progenitors into postmitotic neurons. We provide evidence that TGFb signaling exerts this function via regulating cell cycle length of the NKX2.1+ neural progenitors. Together, this study represents a useful platform for studying human interneuron development and interneuron associated neurological diseases with human pluripotent stem cells.


Sign in / Sign up

Export Citation Format

Share Document