scholarly journals Increasing Step Rate Affects Rearfoot Kinematics and Ground Reaction Forces during Running

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Kathryn A. Farina ◽  
Michael E. Hahn

Relatively high frontal and transverse plane motion in the lower limbs during running have been thought to play a role in the development of some running-related injuries (RRIs). Increasing step rate has been shown to significantly alter lower limb kinematics and kinetics during running. The purpose of this study was to evaluate the effects of increasing step rate on rearfoot kinematics, and to confirm how ground reaction forces (GRFs) are adjusted with increased step rate. Twenty runners ran on a force instrumented treadmill while marker position data were collected under three conditions. Participants ran at their preferred pace and step rate, then +5% and +10% of their preferred step rate while being cued by a metronome for three minutes each. Sagittal and frontal plane angles for the rearfoot segment, tibial rotation, and GRFs were calculated during the stance phase of running. Significant decreases were observed in sagittal and frontal plane rearfoot angles, tibial rotation, vertical GRF, and anteroposterior GRF with increased step rate compared with the preferred step rate. Increasing step rate significantly decreased peak sagittal and frontal plane rearfoot and tibial rotation angles. These findings may have implications for some RRIs and gait retraining.

2013 ◽  
Vol 103 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Douglas W. Powell ◽  
D.S. Blaise Williams ◽  
Robert J. Butler

Background: Malalignment and dysfunction of the foot have been associated with an increased propensity for overuse and traumatic injury in athletes. Several multisegment foot models have been developed to investigate motions in the foot. However, it remains unknown whether the kinematics measured by different multisegment foot models are equivocal. The purpose of the present study is to examine the efficacy of two multisegment foot models in tracking aberrant foot function. Methods: Ten high-arched and ten low-arched female athletes walked and ran while ground reaction forces and three-dimensional kinematics were tracked using the Leardini and Oxford multisegment foot models. Ground reaction forces and joint angles were calculated with Visual 3D (C-Motion Inc, Germantown, MD). Repeated-measures analyses of variance were used to analyze peak eversion, time to peak eversion, and eversion excursions. Results: The Leardini model was more sensitive to differences in peak eversion angles than the Oxford model. However, the Oxford model detected differences in eversion excursion values that the Leardini model did not detect. Conclusions: Although both models found differences in frontal plane motion between high- and low-arched athletes, the Leardini multisegment foot model is suggested to be more appropriate as it directly tracks frontal plane midfoot motion during dynamic motion. (J Am Podiatr Med Assoc 103(2): 99–105, 2013)


2011 ◽  
Vol 27 (3) ◽  
pp. 437-445 ◽  
Author(s):  
H.-C. Lin ◽  
H.-C. Hsu ◽  
T.-W. Lu

ABSTRACTStair locomotion is an important but challenging functional activity for people with lower limb pathology. This study aimed to investigate the bilateral changes in force-bearing on lower limbs during stair locomotion in patients with unilateral ACL deficiency. The ground reaction forces (GRF) were collected from three force platforms: One at ground level in front of a 5-step stair and two on the first two steps respectively. Parameters in vertical and anterior-posterior GRF were extracted and compared between the ACL-deficient (ACLD) and control groups. The ACLD group showed significantly slower stepping cadences in both stair ascent and stepping down to the ground (p < 0.05). The vertical GRF in the ACLD group demonstrated smaller peak forces but larger minimum forces between the two peaks than those in the control group during both stair ascent and descent. Significantly reduced anterior propulsive forces and push-off rates in the late stance were also found in both limbs of the ACLD group (p < 0.05). The slower cadences and reduced force-bearing on the affected limb suggested a protective strategy was adopted. However, the anterior loading parameters in the early stance on the unaffected limb demonstrated different adaptations with significantly larger magnitudes during stair ascent but reduced magnitudes during stair descent (p < 0.05). Similar results were also found in the weight- transferring strategies between legs in consecutive steps with a significantly larger percentage of lift-up forces but a smaller percentage of impact forces on the leading unaffected limb. The results of this study indicated a cautious force-bearing strategy and bilateral adaptation were apparent in the patients with unilateral ACL deficiency. This information may provide a safety guideline for the patients and be helpful for a better use of the stair tasks as part of a rehabilitation program.


2013 ◽  
Vol 29 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Paulo H. Marchetti ◽  
Maria I.V. Orselli ◽  
Marcos Duarte

The aim of this study was to investigate the effects of unilateral and bilateral fatigue on both postural and power bipedal tasks. Ten healthy subjects performed two tasks: bipedal quiet standing and a maximal bipedal counter-movement jumping before and after unilateral (with either the dominant or nondominant lower limb) and bilateral (with both lower limbs) fatigue. We employed two force plates (one under each lower limb) to measure the ground reaction forces and center of pressure produced by subjects during the tasks. To quantify the postural sway during quiet standing, we calculated the resultant center of pressure (COP) speed and COP area of sway, as well as the mean weight distribution between lower limbs. To quantify the performance during the countermovement jumping, we calculated the jump height and the peak force of each lower limb. We observed that both unilateral and bilateral fatigue affected the performance of maximal voluntary jumping and standing tasks and that the effects of unilateral and bilateral fatigue were stronger in the dominant limb than in the nondominant limb during bipedal tasks. We conclude that unilateral neuromuscular fatigue affects both postural and power tasks negatively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Anabèle Brière ◽  
Sylvie Nadeau ◽  
Séléna Lauzière ◽  
Denis Gravel

Background. The weight-bearing (WB) and effort distributions during the five-repetition sit-to-stand test (5R-STS) were assessed in healthy and hemiparetic subjects and were compared to the distributions obtained for a single STS task (1-STS). Methods. Eighteen hemiparetic subjects and 12 controls were included. The WB distribution and time were computed using the vertical ground reaction forces. The knee muscles' effort distribution was quantified with the electromyographic (EMG) data of the STS transfers expressed relatively to the EMG values of maximal strength assessments. Results. In both groups, the time, WB, and effort distributions did not differ between repetitions of the 5R-STS test. The WB and effort distributions of the first repetition were more asymmetrical than those for the 1-STS for the hemiparetic subjects only. Conclusions. Since no changes were found between repetitions, the 5R-STS test might not be demanding enough. The hemiparetic subjects adopt different WB and effort distribution strategies according to the number of STSs to complete.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Emma Reznick ◽  
Kyle R. Embry ◽  
Ross Neuman ◽  
Edgar Bolívar-Nieto ◽  
Nicholas P. Fey ◽  
...  

AbstractHuman locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities. This data paper reports a new dataset that includes the lower-limb kinematics and kinetics of ten able-bodied participants walking at multiple inclines (±0°; 5° and 10°) and speeds (0.8 m/s; 1 m/s; 1.2 m/s), running at multiple speeds (1.8 m/s; 2 m/s; 2.2 m/s and 2.4 m/s), walking and running with constant acceleration (±0.2; 0.5), and stair ascent/descent with multiple stair inclines (20°; 25°; 30° and 35°). This dataset also includes sit-stand transitions, walk-run transitions, and walk-stairs transitions. Data were recorded by a Vicon motion capture system and, for applicable tasks, a Bertec instrumented treadmill.


2016 ◽  
Vol 37 (05) ◽  
pp. 369-373 ◽  
Author(s):  
A. dos Santos ◽  
T. Nakagawa ◽  
G. Nakashima ◽  
C. Maciel ◽  
F. Serrão

2019 ◽  
Vol 54 (6) ◽  
pp. 698-707 ◽  
Author(s):  
J. Ty Hopkins ◽  
S. Jun Son ◽  
Hyunsoo Kim ◽  
Garritt Page ◽  
Matthew K. Seeley

Context Chronic ankle instability (CAI) is characterized by multiple sensorimotor deficits, affecting strength, postural control, motion, and movement. Identifying specific deficits is the key to developing appropriate interventions for this patient population; however, multiple movement strategies within this population may limit the ability to identify specific movement deficits. Objective To identify specific movement strategies in a large sample of participants with CAI and to characterize each strategy relative to a sample of uninjured control participants. Design Descriptive laboratory study. Setting Biomechanics laboratory. Patients or Other Participants A total of 200 individuals with CAI (104 men, 96 women; age = 22.3 ± 2.2 years, height = 174.2 ± 9.5 cm, mass = 72.0 ± 14.0 kg) were selected according to the inclusion criteria established by the International Ankle Consortium and were fit into clusters based on movement strategy. A total of 100 healthy individuals serving as controls (54 men, 46 women; age = 22.2 ± 3.0 years, height = 173.2 ± 9.2 cm, mass = 70.7 ± 13.4 kg) were compared with each cluster. Main Outcome Measure(s) Lower extremity joint biomechanics and ground reaction forces were collected during a maximal vertical jump landing, followed immediately by a side cut. Data were reduced to functional output or curves, kinematic data from the frontal and sagittal planes were reduced to a single representative curve for each plane, and representative curves were clustered using a Bayesian clustering technique. Estimated functions for each dependent variable were compared with estimated functions from the control group to describe each cluster. Results Six distinct clusters were identified from the frontal-plane and sagittal-plane data. Differences in joint angles, joint moments, and ground reaction forces between clusters and the control group were also identified. Conclusions The participants with CAI demonstrated 6 distinct movement strategies, indicating that CAI could be characterized by multiple distinct movement alterations. Clinicians should carefully evaluate patients with CAI for sensorimotor deficits and quality of movement to determine the appropriate interventions for treatment.


Sign in / Sign up

Export Citation Format

Share Document