The Effects of Uni- and Bilateral Fatigue on Postural and Power Tasks

2013 ◽  
Vol 29 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Paulo H. Marchetti ◽  
Maria I.V. Orselli ◽  
Marcos Duarte

The aim of this study was to investigate the effects of unilateral and bilateral fatigue on both postural and power bipedal tasks. Ten healthy subjects performed two tasks: bipedal quiet standing and a maximal bipedal counter-movement jumping before and after unilateral (with either the dominant or nondominant lower limb) and bilateral (with both lower limbs) fatigue. We employed two force plates (one under each lower limb) to measure the ground reaction forces and center of pressure produced by subjects during the tasks. To quantify the postural sway during quiet standing, we calculated the resultant center of pressure (COP) speed and COP area of sway, as well as the mean weight distribution between lower limbs. To quantify the performance during the countermovement jumping, we calculated the jump height and the peak force of each lower limb. We observed that both unilateral and bilateral fatigue affected the performance of maximal voluntary jumping and standing tasks and that the effects of unilateral and bilateral fatigue were stronger in the dominant limb than in the nondominant limb during bipedal tasks. We conclude that unilateral neuromuscular fatigue affects both postural and power tasks negatively.

2011 ◽  
Vol 20 (4) ◽  
pp. 442-456 ◽  
Author(s):  
Zohreh Meshkati ◽  
Mehdi Namazizadeh ◽  
Mahyar Salavati ◽  
Masood Mazaheri

Context:Although reliability is a population-specific property, few studies have investigated the measurement error associated with force-platform parameters in athletic populations.Objective:To investigate the skill-related differences between athletes and nonathletes in reliability of center-of-pressure (COP) summary measures under eyes-open (EO) and eyes-closed (EC) conditions.Design:Test–retest reliability study.Setting:COP was recorded during double-leg quiet standing on a Kistler force platform before and after a fatiguing treadmill exercise, with EO and EC.Participants:31 male participants including 15 athletes practiced in karate and 16 nonathletes.Main Outcome Measures:Standard deviation (SD) of amplitude, phase-plane portrait, SD of velocity, mean total velocity, and area were calculated from 30-s COP data. Intraclass correlation coefficient (ICC), standard error of measurement, and coefficient of variation (CV) were used as estimates of reliability and precision.Results:Higher ICCs were found for COP measures in the athlete (compared with the nonathlete) group, postfatigued (compared with prefatigued) condition, and EC (compared with EO) tests. CVs smaller than 15% were obtained for most of the COP measures. SD of velocity in the anteroposterior direction showed the highest reliability in most conditions.Conclusions:Tests with EC and to a lesser extent tests performed in the athlete group and in the postfatigued condition showed better reliability.


Motor Control ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 91-112
Author(s):  
Fatemeh Azadinia ◽  
Ismail Ebrahimi-Takamjani ◽  
Mojtaba Kamyab ◽  
Morteza Asgari ◽  
Mohamad Parnianpour

The characteristics of postural sway were assessed in quiet standing under three different postural task conditions in 14 patients with nonspecific chronic low back pain and 12 healthy subjects using linear and nonlinear center of pressure parameters. The linear parameters consisted of area, the mean total velocity, sway amplitude, the SD of velocity, and the phase plane portrait. The nonlinear parameters included the Lyapunov exponent, sample entropy, and the correlation dimension. The results showed that the amount of postural sway was higher in the patients with low back pain compared with the healthy subjects. Assessing the nonlinear parameters of the center of pressure showed a lower sample entropy and a higher correlation dimension in the patients with low back pain compared with the healthy subjects. The results of this study demonstrate the greater regularity and higher dimensionality of the center of pressure fluctuations in patients with nonspecific chronic low back pain, which suggests that these patients adopt different postural control strategies to maintain an upright stance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Žiga Kozinc ◽  
Nebojša Trajković ◽  
Darjan Smajla ◽  
Nejc Šarabon

Neuromuscular fatigue is known to impair balance ability, which is reflected in increased postural sway during quiet standing tasks. Recently, quantifying transient characteristics of postural sway has been suggested as an approach to obtain additional information regarding postural control. However, this approach is currently vastly unexplored. The purpose of this study was to investigate the effects of fatigue (induced by a repeated change of direction task) on postural sway and its transient characteristics during single-leg standing, including whole-trial estimates and indexes of transient behavior in young healthy active adults. The study involved 28 physically active students (14 females). Single-leg postural sway was recorded for 30s before and after a fatiguing protocol, which consisted of a repeated change of direction tasks. We calculated the traditional whole-trial estimates of postural sway [center-of-pressure (CoP) velocity and amplitude in anterior-posterior (AP) and medial-lateral (ML) directions] and corresponding transient behavior indexes, based on three 10-s intervals. Statistically significant sex×fatigue interaction with medium effect sizes was found for whole-trial CoP velocity in AP (p=0.028; η2=0.17) and ML directions (p=0.019; η2=0.19). Post-hoc test showed that both variables substantially decreased in female participants (p=0.041–0.045; d=0.54–0.56), but remained similar in males (p=0.194–0.294). There were small to medium statistically significant main effects of fatigue on transient index for CoP amplitude in both directions (p=0.042–0.049; η2=0.02–0.14). Notably, CoP AP amplitude increased in the first 10-s interval for males (before fatigue: 5.6±1.3mm; after fatigue: 6.3±1.6mm), while the CoP AP amplitude in the third interval remained similar after fatigue (before fatigue: 5.5±1.4mm; after fatigue: 5.1±1.2mm). In conclusion, the responses to fatigue in terms of postural sway were time interval specific, and there were certain sex-differences in responses to fatigue, which could be related to better ability to adapt balance strategies in females. Moreover, our results demonstrate that the indexes of transient behavior could perhaps detect smaller fatigue-induced changes in postural sway that are seen in whole-trial estimates.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Anelise Sonza ◽  
Caroline C. Robinson ◽  
Matilde Achaval ◽  
Milton A. Zaro

The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3±2.6years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P≤0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247395
Author(s):  
Tiago Penedo ◽  
Paula Favaro Polastri ◽  
Sérgio Tosi Rodrigues ◽  
Felipe Balistieri Santinelli ◽  
Elisa de Carvalho Costa ◽  
...  

The aim of this study was to investigate the effects of ankle and hip muscle fatigue on motor adjustments (experiment 1) and symmetry (experiment 2) of postural control during a quiet standing task. Twenty-three young adults performed a bipedal postural task on separate force platforms, before and after a bilateral ankle and hip muscle fatigue protocol (randomized). Ankle and hip muscles were fatigued separately using a standing calf raise protocol (ankle fatigue) on a step and flexion and extension of the hip (hip fatigue) sitting on a chair, at a controlled movement frequency (0.5Hz), respectively. In both experiments, force, center of pressure, and electromyography parameters were measured. The symmetry index was used in experiment 2 to analyze the postural asymmetry in the parameters. Our main findings showed that muscle fatigue impaired postural stability, regardless of the fatigued muscle region (i.e., ankle or hip). In addition, young adults used an ankle motor strategy (experiment 1) before and after both the ankle and hip muscle fatigue protocols. Moreover, we found increased asymmetry between the lower limbs (experiment 2) during the quiet standing task after muscle fatigue. Thus, we can conclude that the postural motor strategy is not muscle fatigue joint-dependent and a fatigue task increases postural asymmetry, regardless of the fatigued region (hip or ankle). These findings could be applied in sports training and rehabilitation programs with the objective of reducing the fatigue effects on asymmetry and improving balance.


2020 ◽  
Vol 10 (8) ◽  
pp. 2940
Author(s):  
Jacek Stodółka ◽  
Wieslaw Blach ◽  
Janez Vodicar ◽  
Krzysztof Maćkała

To investigate the level of bilateral symmetry or asymmetry between right and left foot center of pressure (COP) trajectory in the mediolateral and anteroposterior directions, this study involved 102 participants (54 females and 48 males). Ground reaction forces were measured using two Kistler force plates during two 45-s quiet standing trials. Comparisons of COP trajectory were performed by correlation and scatter plot analysis. Strong and very strong positive correlations (from 0.6 to 1.0) were observed between right and left foot anteroposterior COP displacement trajectory in 91 participants; 11 individuals presented weak or negative correlations. In the mediolateral direction, moderate and strong negative correlations (from −0.5 to −1.0) were observed in 69 participants, weak negative or weak positive correlations in 30 individuals, and three showed strong positive correlations (0.6 to 1.0). Additional investigation is warranted to compare COP trajectories between asymptotic individuals as assessed herein (to determine normative data) and those with foot or leg symptoms to better understand the causes of COP asymmetry and aid clinicians with the diagnosis of posture-related pathologies.


2020 ◽  
Vol 36 (5) ◽  
pp. 307-312
Author(s):  
James Scales ◽  
Jamie M. O’Driscoll ◽  
Damian Coleman ◽  
Dimitrios Giannoglou ◽  
Ioannis Gkougkoulis ◽  
...  

The primary purpose of this study was to examine lateral deviations in center of pressure as a result of an extreme-duration load carriage task, with particular focus on heel contact. A total of 20 (n = 17 males and n = 3 females) soldiers from a special operation forces unit (body mass 80.72 [21.49] kg, stature 178.25 [8.75] cm, age 26 [9] y) underwent gait plantar pressure assessment and vertical jump testing before and after a 43-km load carriage event (duration 817.02 [32.66] min) carrying a total external load of 29.80 (1.05) kg. Vertical jump height decreased by 18.62% (16.85%) from 0.30 (0.08) to 0.24 (0.07) m, P < .001. Loading peak and midstance force minimum were significantly increased after load carriage (2.59 [0.51] vs 2.81 [0.61] body weight, P = .035, Glass delta = 0.44 and 1.28 [0.40] vs 1.46 [0.41] body weight, P = .015, Glass delta = 0.45, respectively) and increases in lateral center of pressure displacement were observed as a result of the load carriage task 14.64 (3.62) to 16.97 (3.94) mm, P < .029. In conclusion, load carriage instigated a decrease in neuromuscular function alongside increases in ground reaction forces associated with injury risk and center of pressure changes associated with ankle sprain risk. Practitioners should consider that possible reductions in ankle stability remain once load carriage has been completed, suggesting soldiers are still at increased risk of injury even once the load has been removed.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2011 ◽  
Vol 27 (3) ◽  
pp. 437-445 ◽  
Author(s):  
H.-C. Lin ◽  
H.-C. Hsu ◽  
T.-W. Lu

ABSTRACTStair locomotion is an important but challenging functional activity for people with lower limb pathology. This study aimed to investigate the bilateral changes in force-bearing on lower limbs during stair locomotion in patients with unilateral ACL deficiency. The ground reaction forces (GRF) were collected from three force platforms: One at ground level in front of a 5-step stair and two on the first two steps respectively. Parameters in vertical and anterior-posterior GRF were extracted and compared between the ACL-deficient (ACLD) and control groups. The ACLD group showed significantly slower stepping cadences in both stair ascent and stepping down to the ground (p < 0.05). The vertical GRF in the ACLD group demonstrated smaller peak forces but larger minimum forces between the two peaks than those in the control group during both stair ascent and descent. Significantly reduced anterior propulsive forces and push-off rates in the late stance were also found in both limbs of the ACLD group (p < 0.05). The slower cadences and reduced force-bearing on the affected limb suggested a protective strategy was adopted. However, the anterior loading parameters in the early stance on the unaffected limb demonstrated different adaptations with significantly larger magnitudes during stair ascent but reduced magnitudes during stair descent (p < 0.05). Similar results were also found in the weight- transferring strategies between legs in consecutive steps with a significantly larger percentage of lift-up forces but a smaller percentage of impact forces on the leading unaffected limb. The results of this study indicated a cautious force-bearing strategy and bilateral adaptation were apparent in the patients with unilateral ACL deficiency. This information may provide a safety guideline for the patients and be helpful for a better use of the stair tasks as part of a rehabilitation program.


Sign in / Sign up

Export Citation Format

Share Document