Bilateral Changes in Ground Reaction Forces in Patients with Unilateral Anterior Cruciate Ligament Deficiency During Stair Locomotion

2011 ◽  
Vol 27 (3) ◽  
pp. 437-445 ◽  
Author(s):  
H.-C. Lin ◽  
H.-C. Hsu ◽  
T.-W. Lu

ABSTRACTStair locomotion is an important but challenging functional activity for people with lower limb pathology. This study aimed to investigate the bilateral changes in force-bearing on lower limbs during stair locomotion in patients with unilateral ACL deficiency. The ground reaction forces (GRF) were collected from three force platforms: One at ground level in front of a 5-step stair and two on the first two steps respectively. Parameters in vertical and anterior-posterior GRF were extracted and compared between the ACL-deficient (ACLD) and control groups. The ACLD group showed significantly slower stepping cadences in both stair ascent and stepping down to the ground (p < 0.05). The vertical GRF in the ACLD group demonstrated smaller peak forces but larger minimum forces between the two peaks than those in the control group during both stair ascent and descent. Significantly reduced anterior propulsive forces and push-off rates in the late stance were also found in both limbs of the ACLD group (p < 0.05). The slower cadences and reduced force-bearing on the affected limb suggested a protective strategy was adopted. However, the anterior loading parameters in the early stance on the unaffected limb demonstrated different adaptations with significantly larger magnitudes during stair ascent but reduced magnitudes during stair descent (p < 0.05). Similar results were also found in the weight- transferring strategies between legs in consecutive steps with a significantly larger percentage of lift-up forces but a smaller percentage of impact forces on the leading unaffected limb. The results of this study indicated a cautious force-bearing strategy and bilateral adaptation were apparent in the patients with unilateral ACL deficiency. This information may provide a safety guideline for the patients and be helpful for a better use of the stair tasks as part of a rehabilitation program.

2021 ◽  
Vol 11 (6) ◽  
pp. 1780-1788
Author(s):  
Habaxi Kaken ◽  
Shanshan Wang ◽  
Wei Zhao ◽  
Baoerjiang Asihaer ◽  
Li Wang

This article studies the effects of arthroscopic imaging treatment and clinical rehabilitation of knee sports injuries. Arthroscopy was used to perform meniscus trimming and resection for 40 patients with knee sports injuries. The ages of the patients ranged from 20 to 60 years old. All patients received routine rehabilitation training such as continuous passive motion of the knee joint, biofeedback of the lower limbs, and air pressure therapy of the lower limbs. In addition, the control group was given muscle strength training, and the training began after the patients received the quadriceps muscle strength test. The removal of the joint cavity and the joint debridement has achieved satisfactory treatment results. In the experiment, the test cases were divided into two groups, and the sensor test platform was used for signal collection. Normal activities can be resumed 2 weeks after the operation. After a follow-up of 6 to 24 months, the knee joint pain disappeared, the joint was free of swelling, and the knee function was normal up to 93%. Arthroscopic reconstruction of the anterior and posterior cruciate ligament joint repair/reconstruction of the medial and posterolateral ligament knots is safe and feasible for the treatment of multiple ligament injuries of the knee joint. It has the advantages of less trauma and quick recovery. Early postoperative systemic and standardized rehabilitation exercises can obtain good knee joint function.


2020 ◽  
Vol 33 (03) ◽  
pp. 189-197
Author(s):  
Julia Knebel ◽  
Daniela Eberle ◽  
Stephanie Steigmeier-Raith ◽  
Sven Reese ◽  
Andrea Meyer-Lindenberg

Abstract Objective The aim of this study was to compare outcomes after tibial plateau levelling osteotomy (TPLO) and modified Maquet procedure (MMP) for the treatment of cranial cruciate ligament rupture (CCLR) in dogs using clinical and radiographic evaluation and treadmill-based force plate gait analysis. Study Design This study was a prospective, randomized, controlled study. Materials and Methods Sixty-one dogs (76 joints) with CCLR were treated with TPLO (n = 30 dogs, 41 joints) or MMP (n = 31 dogs, 35 joints) and compared with a control group of 16 healthy Labrador Retrievers. Outcomes after surgery were compared by clinical orthopaedic assessment, radiographic evaluation and force plate gait analysis performed preoperatively, and then at 6 weeks, 3 and 6 months postoperatively. For objective comparison of ground reaction forces, the data were compared with the control group. Major complications were reported. Results A significant improvement in ground reaction forces was reached in all surgically treated dogs. No significant difference was found between the surgical methods at any postoperative re-examination. With regard to peak vertical force (PVF), there were significantly more patients with TPLO within the reference range of healthy dogs at the 3 months re-examination than dogs with MMP. There was no significant difference in mean value comparisons between TPLO and control groups 6 months postoperatively. Compared with the control group, mean values of 93.9% (PVF) and 85.9% (vertical impulse [VI]) were reached by the TPLO group and 89.4% (PVF) and 79.9% (VI) by the MMP group, 6 months postoperatively.No significant differences were found regarding major complications or progression of osteoarthritis. Conclusions Although no significant differences were found between the surgical methods, TPLO patients showed superiority with regard to clinical outcome.


2020 ◽  
Vol 9 (9) ◽  
pp. 2826
Author(s):  
Wioletta Dziubek ◽  
Małgorzata Stefańska ◽  
Katarzyna Bulińska ◽  
Katarzyna Barska ◽  
Rafał Paszkowski ◽  
...  

Chronic ischemia of the lower extremities often presents as intermittent claudication characterized by lower limb pain which subsides after a short break. This study aimed to provide an assessment of the spatiotemporal parameters of gait and ground reaction forces in patients with PAD participating in three forms of supervised physical training. A total of 80 subjects completed a three-month supervised physical rehabilitation program with three sessions per week. The subjects were assigned to one of three programs: group 1—standard walking training on a treadmill (TT); group 2—Nordic walking (NW) training; group 3—strength and endurance training comprised of NW with isokinetic resistance training (NW + ISO). Gait biomechanics tests (kinematic and kinetic parameters of gait) and a six-minute walk test were carried out before and after three months of physical training. Nordic walking training led to the greatest improvements in the gait pattern of patients with PAD and a significant increase in the absolute claudication distance and total gait distance. Combined training (NW + ISO) by strengthening the muscles of the lower extremities increased the amplitude of the general center of gravity oscillation to the greatest extent. Treadmill training had little effect on the gait pattern. Nordic walking training should be included in the rehabilitation of patients with PAD as a form of gait training, which can be conducted under supervised or unsupervised conditions.


Author(s):  
Heydar Sadeghi ◽  
Hesam Fazlali ◽  
Saba Sadeghi ◽  
Seyedmojtaba Seyedmojtaba Ojaghi

Background: In athletes with anterior cruciate ligament (ACL) deficiencies could assess functional capabilities with different instruments such as use of a camera in vivo situation. However, these methods have suffered from a large number of limitations such as inability to be repeatable and complexity in technique. Objective: The main purpose of this study was to compare gait pattern of the athletes with ACL injury and able-bodied subjects using an accelerometer. Method: A three-dimensional accelerometer was placed over the tibia tuberosity of 20 healthy and 20 individuals with ACL-deficiencies (ACLD). After walking on the treadmill, the principal components of the acceleration data were calculated using MATLAB software. Results: In this study, Principle Component analysis was used for statistical analysis. The results indicated that subjects with ACL deficiency have different gait pattern compared to the control group. The major differences between stride trajectories of the two groups were at the end of mid-swing and the beginning of terminal swing phases in vertical axis. ACL deficient subjects exhibited different gait patterns during mid and terminal stance phases in anterior- posterior axis compared with normal controls. Conclusions: The difference in gait between subjects with ACL deficiency and healthy subjects are depends on variation in the amount of knee flexion and tibia rotation that could be altered to motor recruitment.


2008 ◽  
Vol 21 (03) ◽  
pp. 243-249 ◽  
Author(s):  
D. Damur ◽  
T. Guerrero ◽  
M. Haessig ◽  
P. Montavon ◽  
K. Voss

Summary Objective: To assess functional outcome in dogs with cranial cruciate ligament (CrCL) disease after tibial tuberosity advancement (TTA) using force plate gait analysis, and to evaluate parameters potentially influencing outcome. Study design: Prospective clinical study. Animals: Consecutive clinical patients (n=37) with CrCL-deficient stifles (n=40). Methods: The stifle joints were examined arthroscopically prior to TTA. Meniscal release was not performed if the medial meniscus was intact. Open medial arthrotomy and partial meniscectomy were performed in the presence of meniscal tears. Vertical ground reaction forces were measured preoperatively and at follow-up examinations four to 16 months postoperatively (mean: 5.9 months). The ground reaction forces of a group of 65 healthy dogs were used for the comparison. The potential effects of clinical parameters on functional outcome were evaluated statistically. Results: Complete CrCL rupture was identified in 28 joints, and partial CrCL rupture in 12 joints. The medial meniscus was damaged in 21 stifles. Vertical ground reaction forces were significantly higher at follow-up (P<0.01), but remained significantly lower than those of control dogs (P<0.01). Complications were identified in 25% of joints, and the dogs with complications had significantly lower peak vertical forces at follow-up than the dogs without complications (P=0.04). Other clinical parameters did not influence outcome. Conclusions: Tibial tuberosity advancement significantly improved limb function in dogs with CrCL disease, but did not result in complete return to function. Complications adversely affected functional outcome. Clinical significance: A return to a function of approximately 90% of normal can be expected in dogs with CrCL disease undergoing TTA.


2013 ◽  
Vol 29 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Paulo H. Marchetti ◽  
Maria I.V. Orselli ◽  
Marcos Duarte

The aim of this study was to investigate the effects of unilateral and bilateral fatigue on both postural and power bipedal tasks. Ten healthy subjects performed two tasks: bipedal quiet standing and a maximal bipedal counter-movement jumping before and after unilateral (with either the dominant or nondominant lower limb) and bilateral (with both lower limbs) fatigue. We employed two force plates (one under each lower limb) to measure the ground reaction forces and center of pressure produced by subjects during the tasks. To quantify the postural sway during quiet standing, we calculated the resultant center of pressure (COP) speed and COP area of sway, as well as the mean weight distribution between lower limbs. To quantify the performance during the countermovement jumping, we calculated the jump height and the peak force of each lower limb. We observed that both unilateral and bilateral fatigue affected the performance of maximal voluntary jumping and standing tasks and that the effects of unilateral and bilateral fatigue were stronger in the dominant limb than in the nondominant limb during bipedal tasks. We conclude that unilateral neuromuscular fatigue affects both postural and power tasks negatively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Anabèle Brière ◽  
Sylvie Nadeau ◽  
Séléna Lauzière ◽  
Denis Gravel

Background. The weight-bearing (WB) and effort distributions during the five-repetition sit-to-stand test (5R-STS) were assessed in healthy and hemiparetic subjects and were compared to the distributions obtained for a single STS task (1-STS). Methods. Eighteen hemiparetic subjects and 12 controls were included. The WB distribution and time were computed using the vertical ground reaction forces. The knee muscles' effort distribution was quantified with the electromyographic (EMG) data of the STS transfers expressed relatively to the EMG values of maximal strength assessments. Results. In both groups, the time, WB, and effort distributions did not differ between repetitions of the 5R-STS test. The WB and effort distributions of the first repetition were more asymmetrical than those for the 1-STS for the hemiparetic subjects only. Conclusions. Since no changes were found between repetitions, the 5R-STS test might not be demanding enough. The hemiparetic subjects adopt different WB and effort distribution strategies according to the number of STSs to complete.


2016 ◽  
Vol 32 (3) ◽  
pp. 248-253 ◽  
Author(s):  
Boyi Dai ◽  
Mitchell L. Stephenson ◽  
Samantha M. Ellis ◽  
Michael R. Donohue ◽  
Xiaopeng Ning ◽  
...  

Increased knee flexion and decreased knee valgus angles and decreased impact ground reaction forces (GRF) are associated with decreased anterior cruciate ligament (ACL) loading during landing. The purpose of this study was to determine the effect of tactile feedback provided by a simple device on knee flexion and valgus angles and impact GRF during landing. Kinematic and kinetic data were collected when 28 participants performed baseline, training, and evaluation jump-landing trials. During the training trials, the device was placed on participants’ shanks so that participants received tactile feedback when they reached a peak knee flexion angle of a minimum of 100°. During the evaluation trials, participants were instructed to maintain the movement patterns as they learned from the training trials. Participants demonstrated significantly (P < .008) increased peak knee flexion angles, knee flexion range of motion during early landing (first 100 ms of landing) and stance time, decreased impact posterior and vertical GRF during early landing and jump height, and similar knee valgus angles during the evaluation trials compared with the baseline trials. Immediately following training with tactile feedback, participants demonstrated landing patterns associated with decreased ACL loading. This device may have advantages in application because it provides low-cost, independent, and real-time feedback.


2019 ◽  
Vol 54 (12) ◽  
pp. 1296-1303 ◽  
Author(s):  
Mohammad Karimizadeh Ardakani ◽  
Erik A. Wikstrom ◽  
Hooman Minoonejad ◽  
Reza Rajabi ◽  
Ali Sharifnezhad

Context Hopping exercises are recommended as a functional training tool to prevent lower limb injury, but their effects on lower extremity biomechanics in those with chronic ankle instability (CAI) are unclear. Objective To determine if jump-landing biomechanics change after a hop-stabilization intervention. Design Randomized controlled clinical trial. Setting Research laboratory. Patients or Other Participants Twenty-eight male collegiate basketball players with CAI were divided into 2 groups: hop-training group (age = 22.78 ± 3.09 years, mass = 82.59 ± 9.51 kg, height = 187.96 ± 7.93 cm) and control group (age = 22.57 ± 2.76 years, mass = 78.35 ± 7.02 kg, height = 185.69 ± 7.28 cm). Intervention(s) A 6-week supervised hop-stabilization training program that consisted of 18 training sessions. Main Outcome Measure(s) Lower extremity kinetics and kinematics during a jump-landing task and self-reported function were assessed before and after the 6-week training program. Results The hop-stabilization program resulted in improved self-reported function (P &lt; .05), larger sagittal-plane hip- and knee-flexion angles, and greater ankle dorsiflexion (P &lt; .05) relative to the control group. Reduced frontal-plane joint angles at the hip, knee, and ankle as well as decreased ground reaction forces and a longer time to peak ground reaction forces were observed in the hopping group compared with the control group after the intervention (P &lt; .05). Conclusions The 6-week hop-stabilization training program altered jump-landing biomechanics in male collegiate basketball players with CAI. These results may provide a potential mechanistic explanation for improvements in patient-reported outcomes and reductions in injury risk after ankle-sprain rehabilitation programs that incorporate hop-stabilization exercises.


Sign in / Sign up

Export Citation Format

Share Document