scholarly journals Formyl Peptide Receptor 1 Signaling in Acute Inflammation and Neural Differentiation Induced by Traumatic Brain Injury

Biology ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 238 ◽  
Author(s):  
Roberta Fusco ◽  
Enrico Gugliandolo ◽  
Rosalba Siracusa ◽  
Maria Scuto ◽  
Marika Cordaro ◽  
...  

Traumatic brain injury (TBI) is a shocking disease frequently followed by behavioral disabilities, including risk of cerebral atrophy and dementia. N-formylpeptide receptor 1 (FPR1) is expressed in cells and neurons in the central nervous system. It is involved in inflammatory processes and during the differentiation process in the neural stem cells. We investigate the effect of the absence of Fpr1 gene expression in mice subjected to TBI from the early stage of acute inflammation to neurogenesis and systematic behavioral testing four weeks after injury. C57BL/6 animals and Fpr1 KO mice were subjected to TBI and sacrificed 24 h or four weeks after injury. Twenty-four hours after injury, TBI Fpr1 KO mice showed reduced histological impairment, tissue damage and acute inflammation (MAPK activation, NF-κB signaling induction, NRLP3 inflammasome pathway activation and oxidative stress increase). Conversely, four weeks after TBI, the Fpr1 KO mice showed reduced survival of the proliferated cells in the Dentate Gyrus compared to the WT group. Behavioral analysis confirmed this trend. Moreover, TBI Fpr1 KO animals displayed reduced neural differentiation (evaluated by beta-III tubulin expression) and upregulation of astrocyte differentiation (evaluated by GFAP expression). Collectively, our study reports that, immediately after TBI, Fpr1 increased acute inflammation, while after four weeks, Fpr1 promoted neurogenesis.

Mitochondrion ◽  
2021 ◽  
Vol 57 ◽  
pp. 192-204
Author(s):  
Jyothsna Chitturi ◽  
Vijayalakshmi Santhakumar ◽  
Sridhar S. Kannurpatti

2018 ◽  
Vol 47 (9) ◽  
pp. 1941-1959 ◽  
Author(s):  
Taylor C. Harris ◽  
Rijk de Rooij ◽  
Ellen Kuhl

2021 ◽  
Author(s):  
Aijun Zhang ◽  
Youming Lu ◽  
Lei Yuan ◽  
Pengqi Zhang ◽  
Dongdong Zou ◽  
...  

Abstract Blood-brain barrier (BBB) dysfunction is presented during traumatic brain injury (TBI) and is dependent upon the activation of the NLRP3/Caspase-1 inflammasome pathway. MicroRNA (miRNA) was proved to inhibit signaling pathway activation by targeting gene expression and we predicated in the database that miR-29a targets to NLRP3. Herein, this study aims to define the regulating role of miR-29a in NLRP3 expression and NLRP3/Caspase-1 inflammasome activation in TBI-induced BBB dysfunction. Our results indicated that miR-29a-5p alleviates TBI-induced the increased permeability of endothelial cell and BBB via suppressing NLRP3 expression and NLRP3/Caspase-1 inflammasome activation, providing a promising strategy for relieving TBI via inhibiting NLRP3/Caspase-1 inflammasome activation.


Brain Injury ◽  
2008 ◽  
Vol 22 (3) ◽  
pp. 243-253 ◽  
Author(s):  
Jennifer McWilliams ◽  
Maureen Schmitter-Edgecombe

Blood ◽  
2010 ◽  
Vol 116 (20) ◽  
pp. 4288-4296 ◽  
Author(s):  
Magali Pederzoli-Ribeil ◽  
Francesco Maione ◽  
Dianne Cooper ◽  
Adam Al-Kashi ◽  
Jesmond Dalli ◽  
...  

Abstract Human polymorphonuclear leukocytes adhesion to endothelial cells during the early stage of inflammation leads to cell surface externalization of Annexin A1 (AnxA1), an effector of endogenous anti-inflammation. The antiadhesive properties of AnxA1 become operative to finely tune polymorphonuclear leukocytes transmigration to the site of inflammation. Membrane bound proteinase 3 (PR3) plays a key role in this microenvironment by cleaving the N terminus bioactive domain of AnxA1. In the present study, we generated a PR3-resistant human recombinant AnxA1—named superAnxA1 (SAnxA1)—and tested its in vitro and in vivo properties in comparison to the parental protein. SAnxA1 bound and activated formyl peptide receptor 2 in a similar way as the parental protein, while showing a resistance to cleavage by recombinant PR3. SAnxA1 retained anti-inflammatory activities in the murine inflamed microcirculation (leukocyte adhesion being the readout) and in skin trafficking model. When longer-lasting models of inflammation were applied, SAnxA1 displayed stronger anti-inflammatory effect over time compared with the parental protein. Together these results indicate that AnxA1 cleavage is an important process during neutrophilic inflammation and that controlling the balance between AnxA1/PR3 activities might represent a promising avenue for the discovery of novel therapeutic approaches.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hui Liu ◽  
Gou ping Qiu ◽  
Fei Zhuo ◽  
Wei hua Yu ◽  
Shan quan Sun ◽  
...  

Objective. To understand how aquaporin4 (AQP4) and dystroglycan (DG) polarized distribution change and their roles in brain edema formation after traumatic brain injury (TBI).Methods. Brain water content, Evans blue detection, real-time PCR, western blot, and immunofluorescence were used.Results. At an early stage of TBI, AQP4 and DG maintained vessel-like pattern in perivascular endfeet; M1, M23, and M1/M23 were increased in the core lesion. At a later stage of TBI, DG expression was lost in perivascular area, accompanied with similar but delayed change of AQP4 expression; expression of M1, M23, and DG and the ratio of M1/M2 were increased.Conclusion. At an early stage, AQP4 and DG maintained the polarized distribution. Upregulated M1 and M23 could retard the cytotoxic edema formation. At a later stage AQP4 and DG polarized expression were lost from perivascular endfeet and induced the worst cytotoxic brain edema. The alteration of DG expression could regulate that of AQP4 expression after TBI.


2018 ◽  
Vol 46 (4) ◽  
pp. 1505-1516
Author(s):  
Bing Xue ◽  
Shiyan Ruan ◽  
Ping Xie ◽  
Kaixuan Yan ◽  
Zhi'e Gu ◽  
...  

Objective This study was performed to evaluate the effect of two different methods of controlling glycemic variability (GV) in patients with severe traumatic brain injury (STBI) undergoing surgery. Methods Patients with STBI were randomly grouped into a conventional adjustment process (CAP) group and modified Leuven’s adjustment process (mLAP) group. Each group included 50 patients. Blood glucose levels were continuously monitored and data were recorded and analyzed. Results The mean blood glucose level was stable in both groups for 5 days postoperatively with no significant difference. The standard deviation of the blood glucose level, mean amplitude of glycemic excursions, and glycemic lability index were significantly higher in the CAP than mLAP group for the first 2 days. In the final 3 days, no significant differences were observed between the two groups. The incidence of hypoglycemia was significantly higher in the CAP than mLAP group on the first day. This value gradually declined during the following 4 days, but the difference between the two groups was not significant. Conclusion The mLAP produced more favorable results than the CAP for GV control in the early stage after surgery for STBI.


Sign in / Sign up

Export Citation Format

Share Document