scholarly journals Site-Specific Fluorogenic Protein Labelling Agent for Bioconjugation

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 369 ◽  
Author(s):  
Kelvin K. Tsao ◽  
Ann C. Lee ◽  
Karl É. Racine ◽  
Jeffrey W. Keillor

Many clinically relevant therapeutic agents are formed from the conjugation of small molecules to biomolecules through conjugating linkers. In this study, two novel conjugating linkers were prepared, comprising a central coumarin core, functionalized with a dimaleimide moiety at one end and a terminal alkyne at the other. In our first design, we developed a protein labelling method that site-specifically introduces an alkyne functional group to a dicysteine target peptide tag that was genetically fused to a protein of interest. This method allows for the subsequent attachment of azide-functionalized cargo in the facile synthesis of novel protein-cargo conjugates. However, the fluorogenic aspect of the reaction between the linker and the target peptide was less than we desired. To address this shortcoming, a second linker reagent was prepared. This new design also allowed for the site-specific introduction of an alkyne functional group onto the target peptide, but in a highly fluorogenic and rapid manner. The site-specific addition of an alkyne group to a protein of interest was thus monitored in situ by fluorescence increase, prior to the attachment of azide-functionalized cargo. Finally, we also demonstrated that the cargo can also be attached first, in an azide/alkyne cycloaddition reaction, prior to fluorogenic conjugation with the target peptide-fused protein.

2016 ◽  
Vol 12 (6) ◽  
pp. 1731-1745 ◽  
Author(s):  
Jonathan Lotze ◽  
Ulrike Reinhardt ◽  
Oliver Seitz ◽  
Annette G. Beck-Sickinger

Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide–peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.


2018 ◽  
Vol 7 (6) ◽  
pp. 487-492 ◽  
Author(s):  
Bashir Ahmad Dar ◽  
Zahed Zaheer ◽  
Samreen Fatema ◽  
Mazahar Farooqui

Abstract An easy and efficient scheme is described and designed for the preparation of 4,5-dihydro-1,2,4-oxadiazole using recyclable Cu(OH)x-clay heterogeneous catalyst at room temperature. The cycloaddition reaction is carried out between imine and oxime using an easy protocol where nitrile oxides are produced in situ from aldoximes and reacted with imines to form 1,2,4-oxadiazolines in good yield and tremendous purity. Cu(OH)x-clay catalyst shows excellent catalytic activity for the formation of 1,2,4-oxadiazole. This technique is practically uncomplicated, inexpensive, and excellent with a wide range of functional group tolerance to generate structurally different 1,2,4-oxadiazoles. The prepared catalyst was investigated by X-ray diffraction and scanning electron microscopy techniques. The final products of the synthesized compound were characterized by Fourier transform infrared, mass, and nuclear magnetic resonance spectroscopies.


2021 ◽  
Author(s):  
Dimitra Sakoula ◽  
Garrett J. Smith ◽  
Jeroen Frank ◽  
Rob J. Mesman ◽  
Linnea F.M. Kop ◽  
...  

AbstractThe advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia- and methane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. However, the in situ detection and phylogenetic identification of novel ammonia- and methane-oxidizing bacteria remains a challenge. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and methane-oxidizing bacteria. In this protocol, 1,7-octadiyne is used as a bifunctional enzyme probe that, in combination with a highly specific alkyne-azide cycloaddition reaction, enables the fluorescent or biotin labelling of cells harboring active ammonia and methane monooxygenases. The biotinylation of these enzymes in combination with immunogold labelling reveals the subcellular localization of the tagged proteins, while the fluorescent labelling of cells harboring active ammonia or methane monooxygenases provides a direct link of these functional lifestyles to phylogenetic identification when combined with fluorescence in situ hybridization. Furthermore, we show that this activity-based labelling protocol can be successfully coupled with fluorescence-activated cell sorting for the enrichment of nitrifiers and methanotrophs from complex environmental samples, facilitating the retrieval of their high quality metagenome-assembled genomes. In conclusion, this study demonstrates a novel, functional tagging technique for the reliable detection, identification, and enrichment of ammonia- and methane-oxidizing bacteria present in complex microbial communities.


2018 ◽  
Author(s):  
Daniel D. Brauer ◽  
Emily C. Hartman ◽  
Daniel L.V. Bader ◽  
Zoe N. Merz ◽  
Danielle Tullman-Ercek ◽  
...  

<div> <p>Site-specific protein modification is a widely-used strategy to attach drugs, imaging agents, or other useful small molecules to protein carriers. N-terminal modification is particularly useful as a high-yielding, site-selective modification strategy that can be compatible with a wide array of proteins. However, this modification strategy is incompatible with proteins with buried or sterically-hindered N termini, such as virus-like particles like the well-studied MS2 bacteriophage coat protein. To assess VLPs with improved compatibility with these techniques, we generated a targeted library based on the MS2-derived protein cage with N-terminal proline residues followed by three variable positions. We subjected the library to assembly, heat, and chemical selections, and we identified variants that were modified in high yield with no reduction in thermostability. Positive charge adjacent to the native N terminus is surprisingly beneficial for successful extension, and over 50% of the highest performing variants contained positive charge at this position. Taken together, these studies described nonintuitive design rules governing N-terminal extensions and identified successful extensions with high modification potential.</p> </div>


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Tetrahedron ◽  
2004 ◽  
Vol 60 (23) ◽  
pp. 4959-4965 ◽  
Author(s):  
Subhankar Tripathi ◽  
Kaushik Singha ◽  
Basudeb Achari ◽  
Sukhendu B Mandal

2006 ◽  
Vol 291 (6) ◽  
pp. F1123-F1132 ◽  
Author(s):  
James J. De Yoreo ◽  
S. Roger Qiu ◽  
John R. Hoyer

Calcium oxalate monohydrate (COM) is the primary constituent of the majority of renal stones. Osteopontin (OPN), an aspartic acid-rich urinary protein, and citrate, a much smaller molecule, are potent inhibitors of COM crystallization at levels present in normal urine. Current concepts of the role of site-specific interactions in crystallization derived from studies of biomineralization are reviewed to provide a context for understanding modulation of COM growth at a molecular level. Results from in situ atomic force microscopy (AFM) analyses of the effects of citrate and OPN on growth verified the critical role of site-specific interactions between these growth modulators and individual steps on COM crystal surfaces. Molecular modeling investigations of interactions of citrate with steps and faces on COM crystal surfaces provided links between the stereochemistry of interaction and the binding energy levels that underlie mechanisms of growth modification and changes in overall crystal morphology. The combination of in situ AFM and molecular modeling provides new knowledge that will aid rationale design of therapeutic agents for inhibition of stone formation.


Sign in / Sign up

Export Citation Format

Share Document