scholarly journals Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish (Danio rerio) Testicular Explants

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 429
Author(s):  
Aldo Tovo-Neto ◽  
Emanuel R. M. Martinez ◽  
Aline G. Melo ◽  
Lucas B. Doretto ◽  
Arno J. Butzge ◽  
...  

Cortisol is the major endocrine factor mediating the inhibitory effects of stress on vertebrate reproduction. It is well known that cortisol affects reproduction by interacting with the hypothalamic–pituitary–gonads axis, leading to downstream inhibitory and stimulatory effects on gonads. However, the mechanisms are not fully understood. In this study, we provide novel data demonstrating the stimulatory effects of cortisol on spermatogenesis using an ex vivo organ culture system. The results revealed that cortisol treatment did not modulate basal androgen production, but it influenced transcript levels of a selected number of genes involved in the zebrafish testicular function ar (androgen receptor), star (steroidogenic acute regulatory), cyp17a1 (17α-hydroxylase/17,20 lyase/17,20 desmolase), cyp11a2 (cytochrome P450, family 11, subfamily A, polypeptide 2), hsd11b2 (11-beta hydroxysteroid dehydrogenase), cyp2k22 (cytochrome P450, family 2, subfamily K, polypeptide 22), fkbp5 (FKBP prolyl isomerase 5), grα (glucocorticoid receptor alpha), and grβ (glucocorticoid receptor beta) in a short-term culture. We also showed that cortisol stimulates spermatogonial proliferation and differentiation in an androgen independent manner as well as promoting meiosis and spermiogenesis by increasing the number of spermatozoa in the testes. Moreover, we demonstrated that concomitant treatment with RU 486, a potent glucocorticoid receptor (Gr) antagonist, did not affect the cortisol effects on spermatogonial differentiation but blocked the induced effects on meiosis and spermiogenesis. Supporting the Gr-mediated effects, RU 486 nullified the cortisol-induced expression of sycp3l (synaptonemal complex protein 3), a marker for the meiotic prophase that encodes a component of the synaptonemal complex. This is consistent with in silico analysis that found 10 putative GREs (glucocorticoid response elements) upstream of the zebrafish sycp3l. Finally, we also showed that grα mRNA is expressed in Sertoli and Leydig cells, but also in several types of germ cells, including spermatogonia and spermatocytes. Altogether, this evidence indicates that cortisol exerts paracrine roles in the zebrafish testicular function and spermatogenesis, highlighting its effects on spermatogonial differentiation, meiosis, and spermiogenesis.

2021 ◽  
Vol 7 (6) ◽  
pp. 439
Author(s):  
Tecla Ciociola ◽  
Walter Magliani ◽  
Tiziano De Simone ◽  
Thelma A. Pertinhez ◽  
Stefania Conti ◽  
...  

It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 775
Author(s):  
Olimpia Ortiz-Arrabal ◽  
Ramón Carmona ◽  
Óscar-Darío García-García ◽  
Jesús Chato-Astrain ◽  
David Sánchez-Porras ◽  
...  

Because cartilage has limited regenerative capability, a fully efficient advanced therapy medicinal product is needed to treat severe cartilage damage. We evaluated a novel biomaterial obtained by decellularizing sturgeon chondral endoskeleton tissue for use in cartilage tissue engineering. In silico analysis suggested high homology between human and sturgeon collagen proteins, and ultra-performance liquid chromatography confirmed that both types of cartilage consisted mainly of the same amino acids. Decellularized sturgeon cartilage was recellularized with human chondrocytes and four types of human mesenchymal stem cells (MSC) and their suitability for generating a cartilage substitute was assessed ex vivo and in vivo. The results supported the biocompatibility of the novel scaffold, as well as its ability to sustain cell adhesion, proliferation and differentiation. In vivo assays showed that the MSC cells in grafted cartilage disks were biosynthetically active and able to remodel the extracellular matrix of cartilage substitutes, with the production of type II collagen and other relevant components, especially when adipose tissue MSC were used. In addition, these cartilage substitutes triggered a pro-regenerative reaction mediated by CD206-positive M2 macrophages. These preliminary results warrant further research to characterize in greater detail the potential clinical translation of these novel cartilage substitutes.


1994 ◽  
Vol 9 (6) ◽  
pp. 312-314
Author(s):  
U Lepola ◽  
E Leinonen ◽  
H Koponen

SummaryWe report the case of a patient with major depression and obsessive-compulsive disorder who had simultaneously high serum citalopram, clomipramine, and alprazolam concentrations probably due to the reciprocal competitive inhibition of the cytochrome P450-catalyzed oxidative metabolism.


2018 ◽  
Vol 475 (23) ◽  
pp. 3875-3886 ◽  
Author(s):  
Craig S. Robb ◽  
Lukas Reisky ◽  
Uwe T. Bornscheuer ◽  
Jan-Hendrik Hehemann

Degradation of carbohydrates by bacteria represents a key step in energy metabolism that can be inhibited by methylated sugars. Removal of methyl groups, which is critical for further processing, poses a biocatalytic challenge because enzymes need to overcome a high energy barrier. Our structural and computational analysis revealed how a member of the cytochrome P450 family evolved to oxidize a carbohydrate ligand. Using structural biology, we ascertained the molecular determinants of substrate specificity and revealed a highly specialized active site complementary to the substrate chemistry. Invariance of the residues involved in substrate recognition across the subfamily suggests that they are critical for enzyme function and when mutated, the enzyme lost substrate recognition. The structure of a carbohydrate-active P450 adds mechanistic insight into monooxygenase action on a methylated monosaccharide and reveals the broad conservation of the active site machinery across the subfamily.


Sign in / Sign up

Export Citation Format

Share Document