scholarly journals Highly Modular Protein Micropatterning Sheds Light on the Role of Clathrin-Mediated Endocytosis for the Quantitative Analysis of Protein-Protein Interactions in Live Cells

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 540 ◽  
Author(s):  
Peter Lanzerstorfer ◽  
Ulrike Müller ◽  
Klavdiya Gordiyenko ◽  
Julian Weghuber ◽  
Christof M. Niemeyer

Protein micropatterning is a powerful tool for spatial arrangement of transmembrane and intracellular proteins in living cells. The restriction of one interaction partner (the bait, e.g., the receptor) in regular micropatterns within the plasma membrane and the monitoring of the lateral distribution of the bait’s interaction partner (the prey, e.g., the cytosolic downstream molecule) enables the in-depth examination of protein-protein interactions in a live cell context. This study reports on potential pitfalls and difficulties in data interpretation based on the enrichment of clathrin, which is a protein essential for clathrin-mediated receptor endocytosis. Using a highly modular micropatterning approach based on large-area micro-contact printing and streptavidin-biotin-mediated surface functionalization, clathrin was found to form internalization hotspots within the patterned areas, which, potentially, leads to unspecific bait/prey protein co-recruitment. We discuss the consequences of clathrin-coated pit formation on the quantitative analysis of relevant protein-protein interactions, describe controls and strategies to prevent the misinterpretation of data, and show that the use of DNA-based linker systems can lead to the improvement of the technical platform.

2021 ◽  
Author(s):  
Zhong-Qiu Yu ◽  
Xiao-Man Liu ◽  
Dan Zhao ◽  
Dan-Dan Xu ◽  
Li-Lin Du

Protein-protein interactions are vital for executing nearly all cellular processes. To facilitate the detection of protein-protein interactions in living cells of the fission yeast Schizosaccharomyces pombe, here we present an efficient and convenient method termed the Pil1 co-tethering assay. In its basic form, we tether a bait protein to mCherry-tagged Pil1, which forms cortical filamentary structures, and examine whether a GFP-tagged prey protein colocalizes with the bait. We demonstrate that this assay is capable of detecting pairwise protein-protein interactions of cytosolic proteins and nuclear proteins. Furthermore, we show that this assay can be used for detecting not only binary protein-protein interactions, but also ternary and quaternary protein-protein interactions. Using this assay, we systematically characterized the protein-protein interactions in the Atg1 complex and in the phosphatidylinositol 3-kinase (PtdIns3K) complexes and found that Atg38 is incorporated into the PtdIns3K complex I via an Atg38-Vps34 interaction. Our data show that this assay is a useful and versatile tool and should be added to the routine toolbox of fission yeast researchers.


2019 ◽  
Author(s):  
Georgy Derevyanko ◽  
Guillaume Lamoureux

AbstractProtein-protein interactions are determined by a number of hard-to-capture features related to shape complementarity, electrostatics, and hydrophobicity. These features may be intrinsic to the protein or induced by the presence of a partner. A conventional approach to protein-protein docking consists in engineering a small number of spatial features for each protein, and in minimizing the sum of their correlations with respect to the spatial arrangement of the two proteins. To generalize this approach, we introduce a deep neural network architecture that transforms the raw atomic densities of each protein into complex three-dimensional representations. Each point in the volume containing the protein is described by 48 learned features, which are correlated and combined with the features of a second protein to produce a score dependent on the relative position and orientation of the two proteins. The architecture is based on multiple layers of SE(3)-equivariant convolutional neural networks, which provide built-in rotational and translational invariance of the score with respect to the structure of the complex. The model is trained end-to-end on a set of decoy conformations generated from 851 nonredundant protein-protein complexes and is tested on data from the Protein-Protein Docking Benchmark Version 4.0.


2013 ◽  
Vol 53 (4) ◽  
pp. 1839-1853 ◽  
Author(s):  
Megha Rajendran ◽  
Engin Yapici ◽  
Lawrence W. Miller

2020 ◽  
Vol 21 (16) ◽  
pp. 5638
Author(s):  
Jinhong Cho ◽  
Jinyoung Park ◽  
Eunice EunKyeong Kim ◽  
Eun Joo Song

Deubiquitinating enzymes regulate various cellular processes, particularly protein degradation, localization, and protein–protein interactions. The dysregulation of deubiquitinating enzyme (DUB) activity has been linked to several diseases; however, the function of many DUBs has not been identified. Therefore, the development of methods to assess DUB activity is important to identify novel DUBs, characterize DUB selectivity, and profile dynamic DUB substrates. Here, we review various methods of evaluating DUB activity using cell lysates or purified DUBs, as well as the types of probes used in these methods. In addition, we introduce some techniques that can deliver DUB probes into the cells and cell-permeable activity-based probes to directly visualize and quantify DUB activity in live cells. This review could contribute to the development of DUB inhibitors by providing important information on the characteristics and applications of various probes used to evaluate and detect DUB activity in vitro and in vivo.


2008 ◽  
Vol 5 (12) ◽  
pp. 1053-1060 ◽  
Author(s):  
Michaela Schwarzenbacher ◽  
Martin Kaltenbrunner ◽  
Mario Brameshuber ◽  
Clemens Hesch ◽  
Wolfgang Paster ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1070 ◽  
Author(s):  
Danielle G. May ◽  
Kelsey L. Scott ◽  
Alexandre R. Campos ◽  
Kyle J. Roux

BioID is a well-established method for identifying protein–protein interactions and has been utilized within live cells and several animal models. However, the conventional labeling period requires 15–18 h for robust biotinylation which may not be ideal for some applications. Recently, two new ligases termed TurboID and miniTurbo were developed using directed evolution of the BioID ligase and were able to produce robust biotinylation following a 10 min incubation with excess biotin. However, there is reported concern about inducibility of biotinylation, cellular toxicity, and ligase stability. To further investigate the practical applications of TurboID and ascertain strengths and weaknesses compared to BioID, we developed several stable cell lines expressing BioID and TurboID fusion proteins and analyzed them via immunoblot, immunofluorescence, and biotin-affinity purification-based proteomics. For TurboID we observed signs of protein instability, persistent biotinylation in the absence of exogenous biotin, and an increase in the practical labeling radius. However, TurboID enabled robust biotinylation in the endoplasmic reticulum lumen compared to BioID. Induction of biotinylation could be achieved by combining doxycycline-inducible expression with growth in biotin depleted culture media. These studies should help inform investigators utilizing BioID-based methods as to the appropriate ligase and experimental protocol for their particular needs.


Sign in / Sign up

Export Citation Format

Share Document