scholarly journals Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1487
Author(s):  
Hadeel Alyenbaawi ◽  
W. Ted Allison ◽  
Sue-Ann Mok

The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer’s disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a “prion-like” manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.

2011 ◽  
Vol 29 (4) ◽  
pp. 630-636 ◽  
Author(s):  
TAO CHEN ◽  
LEI ZHANG ◽  
YAN QU ◽  
KAI HUO ◽  
XIAOFAN JIANG ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 1109-1130 ◽  
Author(s):  
Marzieh Hajiaghamemar ◽  
Taotao Wu ◽  
Matthew B. Panzer ◽  
Susan S. Margulies

AbstractWith the growing rate of traumatic brain injury (TBI), there is an increasing interest in validated tools to predict and prevent brain injuries. Finite element models (FEM) are valuable tools to estimate tissue responses, predict probability of TBI, and guide the development of safety equipment. In this study, we developed and validated an anisotropic pig brain multi-scale FEM by explicitly embedding the axonal tract structures and utilized the model to simulate experimental TBI in piglets undergoing dynamic head rotations. Binary logistic regression, survival analysis with Weibull distribution, and receiver operating characteristic curve analysis, coupled with repeated k-fold cross-validation technique, were used to examine 12 FEM-derived metrics related to axonal/brain tissue strain and strain rate for predicting the presence or absence of traumatic axonal injury (TAI). All 12 metrics performed well in predicting of TAI with prediction accuracy rate of 73–90%. The axonal-based metrics outperformed their rival brain tissue-based metrics in predicting TAI. The best predictors of TAI were maximum axonal strain times strain rate (MASxSR) and its corresponding optimal fraction-based metric (AF-MASxSR7.5) that represents the fraction of axonal fibers exceeding MASxSR of 7.5 s−1. The thresholds compare favorably with tissue tolerances found in in–vitro/in–vivo measurements in the literature. In addition, the damaged volume fractions (DVF) predicted using the axonal-based metrics, especially MASxSR (DVF = 0.05–4.5%), were closer to the actual DVF obtained from histopathology (AIV = 0.02–1.65%) in comparison with the DVF predicted using the brain-related metrics (DVF = 0.11–41.2%). The methods and the results from this study can be used to improve model prediction of TBI in humans.


2015 ◽  
Vol 36 (4) ◽  
pp. 1539-1551 ◽  
Author(s):  
Qian Yu ◽  
Zhihong Lu ◽  
Lei Tao ◽  
Lu Yang ◽  
Yu Guo ◽  
...  

Background/Aims: Stroke is among the top causes of death worldwide. Neuroprotective agents are thus considered as potentially powerful treatment of stroke. Methods: Using both HT22 cells and male Sprague-Dawley rats as in vitro and in vivo models, we investigated the effect of NaHS, an exogenous donor of H2S, on the focal cerebral ischemia-reperfusion (I/R) induced brain injury. Results: Administration of NaHS significantly decreased the brain infarcted area as compared to the I/R group in a dose-dependent manner. Mechanistic studies demonstrated that NaHS-treated rats displayed significant reduction of malondialdehyde content, and strikingly increased activity of superoxide dismutases and glutathione peroxidase in the brain tissues compared with I/R group. The enhanced antioxidant capacity as well as restored mitochondrial function are NaHS-treatment correlated with decreased cellular reactive oxygen species level and compromised apoptosis in vitro or in vivo in the presence of NaHS compared with control. Further analysis revealed that the inhibition of PARP-1 cleavage and AIF translocation are involved in the neuroprotective effects of NaHS. Conclusion: Collectively, our results suggest that NaHS has potent protective effects against the brain injury induced by I/R. NaHS is possibly effective through inhibition of oxidative stress and apoptosis.


Author(s):  
Hadeel Alyenbaawi ◽  
Richard Kanyo ◽  
Laszlo F. Locskai ◽  
Razieh Kamali-Jamil ◽  
Michèle G. DuVal ◽  
...  

SummaryTraumatic brain injury (TBI) is a prominent risk factor for neurodegenerative diseases and dementias including chronic traumatic encephalopathy (CTE). TBI and CTE, like all tauopathies, are characterized by accumulation of Tau into aggregates that progressively spread to other brain regions in a prion-like manner. The mechanisms that promote spreading and cellular uptake of tau seeds after TBI are not fully understood, in part due to lack of tractable animal models. Here, we test the putative roles for excess neuronal activity and dynamin-dependent endocytosis in promoting the in vivo spread of tauopathy. We introduce ‘tauopathy reporter’ zebrafish expressing a genetically-encoded fluorescent Tau biosensor that reliably reports accumulation of human tau species when seeded via intra-ventricular brain injections. Subjecting zebrafish larvae to a novel TBI paradigm produced various TBI symptoms including cell death, hemorrhage, blood flow abnormalities, post–traumatic seizures, and Tau inclusions. Bath application of anticonvulsant drugs rescued TBI-induced tauopathy and cell death; these benefits were attributable to inhibition of post-traumatic seizures because co-application of convulsants reversed these beneficial effects. However, one convulsant drug, 4-Aminopyridine, unexpectedly abrogated TBI-induced tauopathy - this was due to its inhibitory action on endocytosis as confirmed via additional dynamin inhibitors. These data suggest a role for seizure activity and dynamin-dependent endocytosis in the prion-like seeding and spreading of tauopathy following TBI. Further work is warranted regarding anti-convulsants that dampen post-traumatic seizures as a route to moderating subsequent tauopathy. Moreover, the data highlight the utility of deploying in vivo Tau biosensor and TBI methods in larval zebrafish, especially regarding drug screening and intervention.Graphical AbstractHighlightsIntroduces first Traumatic Brain Injury (TBI) model in larval zebrafish, and its easyTBI induces clinically relevant cell death, haemorrhage & post-traumatic seizuresCa2+ imaging during TBI reveals spike in brain activity concomitant with seizuresTau-GFP Biosensor allows repeated in vivo measures of prion-like tau aggregationpost-TBI, anticonvulsants stop tauopathies akin to Chronic Traumatic Encephalopathy


2018 ◽  
Author(s):  
Jenny B. Koenig ◽  
David Cantu ◽  
Cho Low ◽  
Farzad Noubary ◽  
Danielle Croker ◽  
...  

AbstractTraumatic brain injury (TBI) causes cortical dysfunction and can lead to post-traumatic epilepsy. Multiple studies demonstrate that GABAergic inhibitory network function is compromised following TBI, which may contribute to hyperexcitability and motor, behavioral, and cognitive deficits. Preserving the function of GABAergic interneurons, therefore, is a rational therapeutic strategy to preserve cortical function after TBI and prevent long-term clinical complications. Here, we explored an approach based on the ketogenic diet, a neuroprotective and anticonvulsant dietary therapy which results in reduced glycolysis and increased ketosis. Utilizing a pharmacologic inhibitor of glycolysis (2-deoxyglucose, or 2-DG), we found that acute in vitro glycolytic inhibition decreased the excitability of excitatory neurons, but not inhibitory interneurons, in cortical slices from naïve mice. Employing the controlled cortical impact (CCI) model of TBI in mice, we found that in vitro 2-DG treatment rapidly attenuated epileptiform activity seen in acute cortical slices 3-5 weeks after TBI. One week of in vivo 2-DG treatment immediately after TBI prevented the development of epileptiform activity, restored excitatory and inhibitory synaptic activity, and attenuated loss of parvalbumin-positive inhibitory interneurons. In summary, inhibition of glycolysis with 2-DG may have therapeutic potential to restore network function following TBI.One Sentence SummaryFollowing traumatic brain injury in mice, in vivo treatment with the glycolytic inhibitor 2-deoxyglucose prevented cortical network pathology including cortical hyperexcitability, changes in synaptic activity, and loss of parvalbumin-expressing GABAergic interneurons.


2021 ◽  
Vol 22 (23) ◽  
pp. 13136
Author(s):  
Han Seok Koh ◽  
SangJoon Lee ◽  
Hyo Jin Lee ◽  
Jae-Woong Min ◽  
Takeshi Iwatsubo ◽  
...  

Alzheimer’s disease (AD) is a form of dementia characterized by progressive memory decline and cognitive dysfunction. With only one FDA-approved therapy, effective treatment strategies for AD are urgently needed. In this study, we found that microRNA-485-3p (miR-485-3p) was overexpressed in the brain tissues, cerebrospinal fluid, and plasma of patients with AD, and its antisense oligonucleotide (ASO) reduced Aβ plaque accumulation, tau pathology development, neuroinflammation, and cognitive decline in a transgenic mouse model of AD. Mechanistically, miR-485-3p ASO enhanced Aβ clearance via CD36-mediated phagocytosis of Aβ in vitro and in vivo. Furthermore, miR-485-3p ASO administration reduced apoptosis, thereby effectively decreasing truncated tau levels. Moreover, miR-485-3p ASO treatment reduced secretion of proinflammatory cytokines, including IL-1β and TNF-α, and eventually relieved cognitive impairment. Collectively, our findings suggest that miR-485-3p is a useful biomarker of the inflammatory pathophysiology of AD and that miR-485-3p ASO represents a potential therapeutic candidate for managing AD pathology and cognitive decline.


Sign in / Sign up

Export Citation Format

Share Document