scholarly journals Secondary Metabolites, Ferulic Acid and p-Hydroxybenzoic Acid Induced Toxic Effects on Photosynthetic Process in Rumex acetosa L.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 233
Author(s):  
M. Iftikhar Hussain ◽  
Manuel J. Reigosa

The elimination of broadleaf weeds from agricultural fields has become an urgent task in plant and environment protection. Allelopathic control is considered a potential approach because of its exclusive and ecological safety measures. Plant secondary metabolites also called allelochemicals are released from plant leaves, roots, stem, bark, flowers and play significant roles in soil rhizosphere signaling, chemical ecology, and plant defense. The present study was carried out to evaluate the impact of two allelochemicals; ferulic acid (FA) and p-hydroxybenzoic acid (pHBA) on photosynthetic characteristics; Fv/Fm: efficiency of photosystem II photochemistry in the dark-adapted state; ΦPSII: photosynthetic quantum yield; NPQ, non-photochemical quenching; qP, photochemical quenching, and photon energy dissipation (1−qP)/NPQ in Rumex acetosa following 6 days exposure. R. acetosa seedlings were grown in perlite culture, irrigated with Hoagland solution and treated with allelopathic compounds FA and pHBA and were evaluated against the photosynthetic attributes. Both compounds behaved as potent inhibitors of photosynthetic traits such as Fv/Fm, ΦPSII, qP, and NPQ in R. acetosa. Photon energy dissipation (1−qP)/NPQ increased significantly from days 3 to 6. Higher dissipation of absorbed energy indicates the inactivation state of reaction centers and their inability to effectively use the absorbed energy in photosynthesis. These results indicated the potential allelopathic application of FA and pHBA for control of broadleaf weed, Rumex acetosa.

2021 ◽  
Vol 118 (43) ◽  
pp. e2109602118
Author(s):  
Lingfei Hu ◽  
Zhenwei Wu ◽  
Christelle A. M. Robert ◽  
Xiao Ouyang ◽  
Tobias Züst ◽  
...  

Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant–environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.


2015 ◽  
Vol 55 (3) ◽  
pp. 272 ◽  
Author(s):  
Ben D. Moore ◽  
Natasha L. Wiggins ◽  
Karen J. Marsh ◽  
M. Denise Dearing ◽  
William J. Foley

Mammals cannot avoid ingesting secondary metabolites, often in significant amounts. Thus, their intake must be regulated to avoid intoxication. Three broad mechanisms have been described by which this can be achieved. These are conditioned aversions mediated by nausea, non-conditioned aversions and the recognition of limits to detoxification. Although there is some overlap between these, we know little about the way that mechanisms of toxin avoidance interact with regulation of nutrient intake and whether one has priority over the other. Nonetheless, regulation of meal length and inter-meal length allows the intake of some plant secondary metabolites to be matched with an animal’s capacity for detoxification and its nutritional requirements. Toxicity itself is not a fixed limitation and recent work suggests that ambient temperature can be a major determinant of the toxicity of plant secondary metabolites, largely through effects on liver function. These effects are likely to be of major importance in predicting the impact of global climate change on herbivores.


2021 ◽  
Author(s):  
Lingfei Hu ◽  
Zhenwei Wu ◽  
Christelle AM Robert ◽  
Ouyang Xiao ◽  
Tobias Zuest ◽  
...  

Specialized metabolites mediate important interactions in both the rhizosphere and the phyllosphere. How this compartmentalized multifunctionality influences plant-environment interactions is unknown. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth in soils with low bioavailable iron but enhance growth in soils with higher bioavailable iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions but enhance herbivore growth when iron is present in its free form. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with major consequences for plant health in variable environments.


Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 282 ◽  
Author(s):  
Oleg Lewkowski ◽  
Carmen I. Mureșan ◽  
Dirk Dobritzsch ◽  
Matthew Fuszard ◽  
Silvio Erler

Honey proteins are essential bee nutrients and antimicrobials that protect honey from microbial spoilage. The majority of the honey proteome includes bee-secreted peptides and proteins, produced in specialised glands; however, bees need to forage actively for nitrogen sources and other basic elements of protein synthesis. Nectar and pollen of different origins can vary significantly in their nutritional composition and other compounds such as plant secondary metabolites. Worker bees producing and ripening honey from nectar might therefore need to adjust protein secretions depending on the quality and specific contents of the starting material. Here, we assessed the impact of different food sources (sugar solutions with different additives) on honey proteome composition and stability, using controlled cage experiments. Honey-like products generated from sugar solution with or without additional protein, or plant secondary metabolites, differed neither in protein quality nor in protein quantity among samples. Storage for 4 weeks prevented protein degradation in most cases, without differences between food sources. The honey-like product proteome included several major royal jelly proteins, alpha-glucosidase and glucose oxidase. As none of the feeding regimes resulted in different protein profiles, we can conclude that worker bees may secrete a constant amount of each bee-specific protein into honey to preserve this highly valuable hive product.


2020 ◽  
Author(s):  
Zoe Bont ◽  
Tobias Züst ◽  
Meret Huber ◽  
Matthias Erb

AbstractPlants can adapt to changing environments by adjusting the production and maintenance of diverse sets of bioactive secondary metabolites. To date, the impact of past climatic conditions relative to other factors such as soil abiotic factors and herbivore pressure on the evolution of plant secondary metabolites is poorly understood, especially for plant roots.We explored associations between root latex secondary metabolites in 63 Taraxacum officinale populations across Switzerland and past climatic conditions, soil abiotic parameters, and root herbivore pressure. To assess the contribution of environmental effects, root secondary metabolites were measured in F0 plants in nature and F2 plants under controlled greenhouse conditions.Concentrations of root latex secondary metabolites were most strongly associated with past climatic conditions, while current soil abiotic factors or root herbivore pressure did not show a clear association with root latex chemistry. Results were identical for natural and controlled conditions, suggesting heritable trait variation rather than environmental plasticity as underlying factor.Synthesis. We conclude that climatic conditions likely play a major role in the evolution of root secondary metabolites. Direct abiotic effects are likely underlying this pattern, hinting at a novel role of root latex metabolites the tolerance of abiotic stress.


2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shabana Bibi ◽  
Ayesha Sarfraz ◽  
Ghazala Mustafa ◽  
Zeeshan Ahmed ◽  
Muhammad Aurang Zeb ◽  
...  

Background: Coronavirus Disease-2019 belongs to the family of viruses which cause a serious pneumonia along with fever, breathing issues and infection of lungs for the first time in China and later spread worldwide. Objective: Several studies and clinical trials have been conducted to identify potential drugs and vaccines for Coronavirus Disease-2019. The present study listed natural secondary metabolites identified from plant sources with antiviral properties and could be safer and tolerable treatment for Coronavirus Disease-2019. Methods: A comprehensive search on the reported studies was conducted using different search engine such as Google scholar, SciFinder, Sciencedirect, Medline PubMed, and Scopus for the collection of research articles based on plantderived secondary metabolites, herbal extracts, and traditional medicine for coronavirus infections. Results: Status of COVID-19 worldwide and information of important molecular targets involved in COVID-19 is described and through literature search, is highlighted that numerous plant species and their extracts possess antiviral properties and studied with respect to Coronavirus treatments. Chemical information, plant source, test system type with mechanism of action for each secondary metabolite is also mentioned in this review paper. Conclusion: The present review has listed plants that have presented antiviral potential in the previous coronavirus pandemics and their secondary metabolites which could be significant for the development of novel and a safer drug which could prevent and cure coronavirus infection worldwide.


Sign in / Sign up

Export Citation Format

Share Document