scholarly journals Comparative Transcriptomic Analysis Reveals the Effects of Drought on the Biosynthesis of Methyleugenol in Asarum sieboldii Miq.

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1233
Author(s):  
Fawang Liu ◽  
Tahir Ali ◽  
Zhong Liu

Asarum sieboldii Miq., a perennial herb in the family Aristolochiaceae, is widely used to treat colds, fever, headache and toothache in China. However, little is known about the drought-tolerance characteristics of A. sieboldii. In this study, to elucidate the molecular–genetic mechanisms of drought-stress tolerance of A. sieboldii, RNA-seq was conducted. In total, 53,344 unigenes were assembled, and 28,715 unigenes were annotated. A total of 6444 differential-expression unigenes (DEGs) were found, which were mainly enriched in phenylpropanoid, starch and sucrose metabolic pathways. Drought stress revealed significant up-regulation of the unigenes encoding PAL, C4H, HCT, C3H, CCR and IGS in the methyleugenol-biosynthesis pathway. Under the condition of maintaining drought for 15 days and 30 days, drought stress reduced the biosynthesis of volatile oil by 24% and 38%, respectively, while the production of key medicinal ingredients (such as methyl eugenol) was increased. These results provide valuable information about the diverse mechanisms of drought resistance in the A. sieboldii, and the changes in the expression of the genes involved in methyleugenol biosynthesis in response to drought stress.

2020 ◽  
Author(s):  
Shipeng Yang ◽  
Lihui Wang ◽  
Qiwen Zhong ◽  
Guangnan Zhang ◽  
Haiwang Zhang ◽  
...  

Abstract Background Jerusalem artichoke (Helianthus tuberosus L.) is a highly stress-resistant crop, especially it grows normally in the desertified land of Qinghai-Tibet Plateau in the past two years, and has become a crop with agricultural, industrial and ecological functions. However, there are few studies on drought resistance of Jerusalem artichoke at present, and studies on the mechanisms of stress resistance of Jerusalem artichoke breeding and fructan are seriously lagging behind. In this study, we selected two differentially resistant cultivars for drought stress experiments with different concentration gradients, the aim was finding DEGs and metabolic pathways associated with drought stress. Results Based on an additional analysis of the metabolic pathways under drought stress using MapMan, the most different types of metabolism included secondary metabolism, light reaction metabolism and cell wall. As a whole, QY1 and QY3 both had a large number of up-regulated genes in the flavor pathway. It was suggested that flavonoids could help Jerusalem artichoke to resist drought stress and maintain normal metabolic activities. In addition, the gene analysis of the abscisic acid (ABA) key metabolic pathway showed that QY3 had more genes in NAC and WRKY than QY1, but QY1 had more genes in response to drought stress as a whole. By combining RNA-Seq and WGCNA, a weighted gene co-expression network was constructed and divided into modules. By analyzing specifically the expressed modules, four modules were found to have the highest correlation with drought. Further research on the genes revealed that all 16 genes related to histone, ABA and protein kinase had the highest significance in these pathways. Conclusions These findings represent the first RNA-Seq analysis of drought stress in Jerusalem artichoke, which is of substantial significance to explore the function of drought resistance in Jerusalem artichoke and the excavation of related genes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qingyuan Li ◽  
Xiaojun Su ◽  
Huanhuan Ma ◽  
Kebing Du ◽  
Min Yang ◽  
...  

AbstractCamellia is a genus of flowering plants in the family Theaceae, and several species in this genus have economic importance. Although a great deal of molecular makers has been developed for molecular assisted breeding in genus Camellia in the past decade, the number of simple sequence repeats (SSRs) publicly available for plants in this genus is insufficient. In this study, a total of 28,854 potential SSRs were identified with a frequency of 4.63 kb. A total of 172 primer pairs were synthesized and preliminarily screened in 10 C. japonica accessions, and of these primer pairs, 111 were found to be polymorphic. Fifty-one polymorphic SSR markers were randomly selected to perform further analysis of the genetic relationships of 89 accessions across the genus Camellia. Cluster analysis revealed major clusters corresponding to those based on taxonomic classification and geographic origin. Furthermore, all the genotypes of C. japonica separated and consistently grouped well in the genetic structure analysis. The results of the present study provide high-quality SSR resources for molecular genetic breeding studies in camellia plants.


2008 ◽  
Vol 44 (2) ◽  
pp. 117-135 ◽  
Author(s):  
V. G. Khomenkov ◽  
A. B. Shevelev ◽  
V. G. Zhukov ◽  
N. A. Zagustina ◽  
A. M. Bezborodov ◽  
...  

Plant Omics ◽  
2020 ◽  
pp. 46-56
Author(s):  
Sunya Nuanlaong ◽  
Suwit Wuthisuthimethavee ◽  
Maruay Mekanawakul ◽  
Potjamarn Suraninpong

Waterlogging seriously constrains growth and yields in oil palm. To date, the responsive molecular changes caused by waterlogging in oil palm remain elusive. To elucidate the molecular genetic mechanisms of waterlogging stress, two varieties of oil palm Deli x Lamé and Deli x Ghana were used. The transcriptome profiles of the roots under waterlogging stress and normal conditions were compared via Ion Torrent Sequencing. Four libraries (GNR, GSR, SNR, and SSR) of oil palm roots after 45 days of normal watering and waterlogging stress were constructed. Approximately 6.2 million sequenced reads per library were obtained, with 5.5 million mapped reads (88.64%) similar to the oil palm genome in the GenBank database. A comparison of GNR/GSR showed a high of 3,289 DEGs with most genes up-regulated (1,863 DEGs). The GO analysis revealed the distribution of the DEGs among various pathways, suggesting a wide spectrum of physiological processes impacted by waterlogging stress. Moreover, qRT-PCR showed strong expression of all selected RNA-seq genes in waterlogged Deli x Ghana (GSR), especially GST, SAPK10 and NAC29 that are reported for the time to respond to waterlogging stress. Thus, this study not only reveals the comprehensive mechanisms of waterlogging responsive transcription in oil palm, but also establishes Deli x Ghana as a highly-adaptable variety to waterlogging conditions.


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1757-1765 ◽  
Author(s):  
Waltram Ravelombola ◽  
Ainong Shi ◽  
Jun Qin ◽  
Yuejin Weng ◽  
Gehendra Bhattarai ◽  
...  

Impacts of drought stress on crop production can significantly impair farmer’s revenue, hence adversely impacting the gross national product growth. For cowpea [Vigna unguiculata (L.) Walp.], which is a legume of economic importance, effects of drought at early vegetative growth could lead to substantial yield losses. However, little has been done with respect to breeding for cowpea cultivars withstanding drought at early vegetative growth. In addition, previous investigations have focused on how plant morphology and root architecture can confer drought tolerance in cowpea, which is not sufficient in efforts to unravel unknown drought tolerance–related genetic mechanisms, potentially of great importance in breeding, and not pertaining to either plant morphology or root architecture. Therefore, the objective of this study was to evaluate aboveground drought-related traits of cowpea genotypes at seedling stage. A total of 30 cowpea genotypes were greenhouse grown within boxes and the experimental design was completely randomized with three replicates. Drought stress was imposed for 28 days. Data on a total of 17 aboveground-related traits were collected. Results showed the following: 1) a large variation in these traits was found among the genotypes; 2) more trifoliate wilt/chlorosis tolerance but more unifoliate wilt/chlorosis susceptible were observed; 3) delayed senescence was related to the ability of maintaining a balanced chlorophyll content in both unifoliate and trifoliate leaves; and 4) the genotypes PI293469, PI349674, and PI293568 were found to be slow wilting and drought tolerant. These results could contribute to advancing breeding programs for drought tolerance in cowpea.


2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Juan Liang ◽  
Miaohua Quan ◽  
Chaowen She ◽  
Anna He ◽  
Xiaoliang Xiang ◽  
...  

2013 ◽  
Vol 38 (10) ◽  
pp. 1884-1890 ◽  
Author(s):  
Ren-He ZHANG ◽  
Dong-Wei GUO ◽  
Xing-Hua ZHANG ◽  
Hai-Dong LU ◽  
Jian-Chao LIU ◽  
...  

2015 ◽  
Vol 41 (1) ◽  
pp. 154 ◽  
Author(s):  
Xing-Hua ZHANG ◽  
Jie GAO ◽  
Wei-Li DU ◽  
Ren-He ZHANG ◽  
Ji-Quan XUE

Sign in / Sign up

Export Citation Format

Share Document