scholarly journals Transcriptional Regulation of MECP2E1-E2 Isoforms and BDNF by Metformin and Simvastatin through Analyzing Nascent RNA Synthesis in a Human Brain Cell Line

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1253
Author(s):  
Marjorie Buist ◽  
David Fuss ◽  
Mojgan Rastegar

Methyl CpG binding protein 2 (MeCP2) is the main DNA methyl-binding protein in the brain that binds to 5-methylcytosine and 5-hydroxymethyl cytosine. MECP2 gene mutations are the main origin of Rett Syndrome (RTT), a neurodevelopmental disorder in young females. The disease has no existing cure, however, metabolic drugs such as metformin and statins have recently emerged as potential therapeutic candidates. In addition, induced MECP2-BDNF homeostasis regulation has been suggested as a therapy avenue. Here, we analyzed nascent RNA synthesis versus steady state total cellular RNA to study the transcriptional effects of metformin (an anti-diabetic drug) on MECP2 isoforms (E1 and E2) and BNDF in a human brain cell line. Additionally, we investigated the impact of simvastatin (a cholesterol lowering drug) on transcriptional regulation of MECP2E1/E2-BDNF. Metformin was capable of post-transcriptionally inducing BDNF and/or MECP2E1, while transcriptionally inhibiting MECP2E2. In contrast simvastatin significantly inhibited BDNF transcription without significantly impacting MECP2E2 transcripts. Further analysis of ribosomal RNA transcripts confirmed that the drug neither individually nor in combination affected these fundamentally important transcripts. Experimental analysis was completed in conditions of the presence or absence of serum starvation that showed minimal impact for serum deprival, although significant inhibition of steady state MECP2E1 by simvastatin was only detected in non-serum starved cells. Taken together, our results suggest that metformin controls MECP2E1/E2-BDNF transcriptionally and/or post-transcriptionally, and that simvastatin is a potent transcriptional inhibitor of BDNF. The transcriptional effect of these drugs on MECP2E1/E2-BDNF were not additive under these tested conditions, however, either drug may have potential application for related disorders.

2019 ◽  
Author(s):  
Mattia Furlan ◽  
Eugenia Galeota ◽  
Nunzio Del Gaudio ◽  
Erik Dassi ◽  
Michele Caselle ◽  
...  

AbstractThe kinetic rates of RNA synthesis, processing and degradation determine the dynamics of transcriptional regulation by governing both the abundance and the responsiveness to modulations of premature and mature RNA species. The study of RNA dynamics is largely based on the integrative analysis of total and nascent transcription, with the latter being quantified through RNA metabolic labeling. We describe here INSPEcT-, a computational method based on mathematical modeling of intronic and exonic expression, able to derive the dynamics of transcription from steady state or time course profiling of just total RNA, without requiring any information on nascent transcripts. Our approach closely recapitulates the kinetic rates obtained through RNA metabolic labeling, improves the ability to detect changes in transcripts half-lives, reduces the cost and complexity of the experiments, and can be adopted to study experimental conditions where nascent transcription cannot be readily profiled. Finally, we applied INSPEcT- to the characterization of post-transcriptional regulation landscapes in dozens of physiological and disease conditions. This approach was included in the INSPEcT Bioconductor package, which can now unveil RNA dynamics from steady state or time course data, with or without the profiling of nascent RNA.


2018 ◽  
Vol 16 (2) ◽  
pp. 127-137
Author(s):  
Paula Sofia Coutinho Medeiros ◽  
Ana Lúcia Marques Batista de Carvalho ◽  
Cristina Ruano ◽  
Juan Carlos Otero ◽  
Maria Paula Matos Marques

Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells. </P><P> Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line. Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability. Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.


2021 ◽  
Vol 7 (8) ◽  
pp. 132
Author(s):  
Giorgio Margaritondo ◽  
Yeukuang Hwu

The high longitudinal and lateral coherence of synchrotron X-rays sources radically transformed radiography. Before them, the image contrast was almost only based on absorption. Coherent synchrotron sources transformed radiography into a multi-faceted tool that can extract information also from “phase” effects. Here, we report a very simple description of the new techniques, presenting them to potential new users without requiring a sophisticated background in advanced physics. We then illustrate the impact of such techniques with a number of examples. Finally, we present the international collaboration SYNAPSE (Synchrotrons for Neuroscience—an Asia-Pacific Strategic Enterprise), which targets the use of phase-contrast radiography to map one full human brain in a few years.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 367
Author(s):  
Konstantinos Giannokostas ◽  
Yannis Dimakopoulos ◽  
Andreas Anayiotos ◽  
John Tsamopoulos

The present work focuses on the in-silico investigation of the steady-state blood flow in straight microtubes, incorporating advanced constitutive modeling for human blood and blood plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-plasticity via a scalar variable that describes the level of the local blood structure at any instance. The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which features bulk viscoelasticity. Incorporating microcirculation phenomena such as the cell-free layer (CFL) formation or the Fåhraeus and the Fåhraeus-Lindqvist effects is an indispensable part of the blood flow investigation. The coupling between them and the momentum balance is achieved through correlations based on experimental observations. Notably, we propose a new simplified form for the dependence of the apparent viscosity on the hematocrit that predicts the CFL thickness correctly. Our investigation focuses on the impact of the microtube diameter and the pressure-gradient on velocity profiles, normal and shear viscoelastic stresses, and thixotropic properties. We demonstrate the microstructural configuration of blood in steady-state conditions, revealing that blood is highly aggregated in narrow tubes, promoting a flat velocity profile. Additionally, the proper accounting of the CFL thickness shows that for narrow microtubes, the reduction of discharged hematocrit is significant, which in some cases is up to 70%. At high pressure-gradients, the plasmatic proteins in both regions are extended in the flow direction, developing large axial normal stresses, which are more significant in the core region. We also provide normal stress predictions at both the blood/plasma interface (INS) and the tube wall (WNS), which are difficult to measure experimentally. Both decrease with the tube radius; however, they exhibit significant differences in magnitude and type of variation. INS varies linearly from 4.5 to 2 Pa, while WNS exhibits an exponential decrease taking values from 50 mPa to zero.


Sign in / Sign up

Export Citation Format

Share Document