scholarly journals Mechanosensitivity in Pulmonary Circulation: Pathophysiological Relevance of Stretch-Activated Channels in Pulmonary Hypertension

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1389
Author(s):  
Solène Barbeau ◽  
Guillaume Gilbert ◽  
Guillaume Cardouat ◽  
Isabelle Baudrimont ◽  
Véronique Freund-Michel ◽  
...  

A variety of cell types in pulmonary arteries (endothelial cells, fibroblasts, and smooth muscle cells) are continuously exposed to mechanical stimulations such as shear stress and pulsatile blood pressure, which are altered under conditions of pulmonary hypertension (PH). Most functions of such vascular cells (e.g., contraction, migration, proliferation, production of extracellular matrix proteins, etc.) depend on a key event, i.e., the increase in intracellular calcium concentration ([Ca2+]i) which results from an influx of extracellular Ca2+ and/or a release of intracellular stored Ca2+. Calcium entry from the extracellular space is a major step in the elevation of [Ca2+]i, involving a variety of plasmalemmal Ca2+ channels including the superfamily of stretch-activated channels (SAC). A common characteristic of SAC is that their gating depends on membrane stretch. In general, SAC are non-selective Ca2+-permeable cation channels, including proteins of the TRP (Transient Receptor Potential) and Piezo channel superfamily. As membrane mechano-transducers, SAC convert physical forces into biological signals and hence into a cell response. Consequently, SAC play a major role in pulmonary arterial calcium homeostasis and, thus, appear as potential novel drug targets for a better management of PH.

2016 ◽  
Vol 311 (3) ◽  
pp. C482-C497 ◽  
Author(s):  
Jun Zhang ◽  
Wenju Lu ◽  
Yuqin Chen ◽  
Qian Jiang ◽  
Kai Yang ◽  
...  

The ubiquitin-proteasome system is considered to be the key regulator of protein degradation. Bortezomib (BTZ) is the first proteasome inhibitor approved by the US Food and Drug Administration for treatment of relapsed multiple myeloma and mantle cell lymphoma. Recently, BTZ treatment was reported to inhibit right ventricular hypertrophy and vascular remodeling in hypoxia-exposed and monocrotaline-injected rats. However, the underlying mechanisms remain poorly understood. We previously confirmed that hypoxia-elevated basal intracellular Ca2+ concentration ([Ca2+]i) and store-operated Ca2+ entry (SOCE) in pulmonary artery smooth muscle cells (PASMCs) are involved in pulmonary vascular remodeling. In this study we aim to determine whether BTZ attenuates the hypoxia-induced elevation of [Ca2+] in PASMCs and the signaling pathway involved in this mechanism. Our results showed that 1) in hypoxia- and monocrotaline-induced rat pulmonary hypertension (PH) models, BTZ markedly attenuated the development and progression of PH, 2) BTZ inhibited the hypoxia-induced increase in cell proliferation, basal [Ca2+]i, and SOCE in PASMCs, and 3) BTZ significantly normalized the hypoxia-upregulated expression of hypoxia-inducible factor-1α, bone morphogenetic protein 4, canonical transient receptor potential isoforms 1 and 6, and the hypoxia-downregulated expression of peroxisome proliferator-activated receptor-γ in rat distal pulmonary arteries and PASMCs. These results indicate that BTZ exerts its protective role in the development of PH potentially by inhibiting the canonical transient receptor potential-SOCE-[Ca2+]i signaling axis in PASMCs.


2010 ◽  
Vol 299 (5) ◽  
pp. L621-L630 ◽  
Author(s):  
Gongyong Peng ◽  
Wenju Lu ◽  
Xiaoyan Li ◽  
Yuqin Chen ◽  
Nanshan Zhong ◽  
...  

Chronic hypoxia causes remodeling and alters contractile responses in both pulmonary arteries and pulmonary veins. Although pulmonary arteries have been studied extensively in these disorders, the mechanisms by which pulmonary veins respond to hypoxia and whether these responses contribute to chronic hypoxic pulmonary hypertension remain poorly understood. In pulmonary arterial smooth muscle, we have previously demonstrated that influx of Ca2+ through store-operated calcium channels (SOCC) thought to be composed of transient receptor potential (TRP) proteins is likely to play an important role in development of chronic hypoxic pulmonary hypertension. To determine whether this mechanism could also be operative in pulmonary venous smooth muscle, we measured intracellular Ca2+ concentration ([Ca2+]i) by fura-2 fluorescence microscopy in primary cultures of pulmonary venous smooth muscle cells (PVSMC) isolated from rat distal pulmonary veins. In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 μM) and nifedipine (5 μM) to deplete sarcoplasmic reticulum Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i, whereas MnCl2 (200 μM) quenched fura-2 fluorescence, indicating store-operated Ca2+ entry (SOCE). SKF-96365 and NiCl2, antagonists of SOCC, blocked SOCE at concentrations that did not alter Ca2+ responses to 60 mM KCl. Of the seven known canonical TRP (TRPC1–7) and six vanilloid-related TRP channels (TRPV1–6), real-time PCR revealed mRNA expression of TRPC1 > TRPC6 > TRPC4 > TRPC2 ≈ TRPC5 > TRPC3, TRPV2 > TRPV4 > TRPV1 in distal PVSMC, and TRPC1 > TRPC6 > TRPC3 > TRPC4 ≈ TRPC5, TRPV2 ≈ TRPV4 > TRPV1 in rat distal pulmonary vein (PV) smooth muscle. Western blotting confirmed protein expression of TRPC1, TRPC6, TRPV2, and TRPV4 in both PVSMC and PV. Our results suggest that SOCE through Ca2+ channels composed of TRP proteins may contribute to Ca2+ signaling in rat distal PV smooth muscle.


2004 ◽  
Vol 286 (3) ◽  
pp. F546-F551 ◽  
Author(s):  
Carie S. Facemire ◽  
Peter J. Mohler ◽  
William J. Arendshorst

In the resistance vessels of the renal microcirculation, store- and/or receptor-operated calcium entry contribute to the rise in vascular smooth muscle cell (VSMC) intracellular calcium concentration in response to vasoconstrictor hormones. Short transient receptor potential (TRPC) channels are widely expressed in mammalian tissues and are proposed mediators of voltage-independent cation entry in multiple cell types, including VSMCs. The seven members of the TRPC gene family (TRPC1-7) encode subunit proteins that are thought to form homo- and heterotetrameric channels that are differentially regulated depending on their subunit composition. In the present study, we demonstrate the relative abundance of TRPC mRNA and protein in freshly isolated rat renal resistance vessels, glomeruli, and aorta. TRPC1, 3, 4, 5, and 6 mRNA and protein were detected in both renal resistance vessels and aorta, whereas TRPC2 and TRPC7 mRNA were not expressed. TRPC1, 3, 5, and 6 protein was present in glomeruli. TRPC3 and TRPC6 protein levels were significantly greater in the renal resistance vessels, about six- to eightfold higher than in aorta. These data suggest that TRPC3 and TRPC6 may play a role in mediating voltage-independent calcium entry in renal resistance vessels that is functionally distinct from that in aorta.


2013 ◽  
Vol 305 (3) ◽  
pp. C276-C289 ◽  
Author(s):  
Marc Anderson ◽  
Eun Young Kim ◽  
Henning Hagmann ◽  
Thomas Benzing ◽  
Stuart E. Dryer

Gain-of-function mutations in the transient receptor potential (TRP) cation channel subfamily C member 6 ( TRPC6) gene and mutations in the NPHS2 gene encoding podocin result in nephrotic syndromes. The purpose of this study was to determine the functional significance of biochemical interactions between these proteins. We observed that gating of TRPC6 channels in podocytes is markedly mechanosensitive and can be activated by hyposmotic stretch or indentation of the plasma membrane. Stretch activation of cationic currents was blocked by small interfering RNA knockdown of TRPC6, as well as by SKF-96365 or micromolar La3+. Stretch activation of podocyte TRPC6 persisted in the presence of inhibitors of phospholipase C (U-73122) and phospholipase A2 (ONO-RS-082). Robust stretch responses also persisted when recording electrodes contained guanosine 5′- O-(2-thiodiphosphate) at concentrations that completely suppressed responses to ANG II. Stretch responses were enhanced by cytochalasin D but were abolished by the peptide GsMTx4, suggesting that forces are transmitted to the channels through the plasma membrane. Podocin and TRPC6 interact at their respective COOH termini. Knockdown of podocin markedly increased stretch-evoked activation of TRPC6 but nearly abolished TRPC6 activation evoked by a diacylglycerol analog. These data suggest that podocin acts as a switch to determine the preferred mode of TRPC6 activation. They also suggest that podocin deficiencies will result in Ca2+ overload in foot processes, as with gain-of-function mutations in the TRPC6 gene. Finally, they suggest that mechanical activation of TRP family channels and the preferred mode of TRP channel activation may depend on whether members of the stomatin/prohibitin family of hairpin loop proteins are present.


2020 ◽  
Author(s):  
Marc Duque ◽  
Corinne A. Lee-Kubli ◽  
Yusuf Tufail ◽  
Uri Magaram ◽  
Jose Mendoza Lopez ◽  
...  

Our understanding of the nervous system has been fundamentally advanced by light- and small molecule-sensitive proteins that can be used to modify neuronal excitability. However, optogenetics requires invasive instrumentation while chemogenetics lacks temporal control. Here, we identify a candidate channel that confers sensitivity to non-invasive ultrasound on millisecond timescales. Using a functional screen, we find that human Transient Receptor Potential A1 (hsTRPA1) increases ultrasound-evoked intracellular calcium levels and membrane potentials. Ultrasound, but not agonist, -evoked, gating of hsTRPA1, requires the N-terminal tip region, intact actin cytoskeleton, and cholesterol, implicating these features in the sonogenetic mechanism. We then use calcium imaging and electrophysiology to confirm that ultrasound-evoked responses of primary neurons are potentiated by hsTRPA1. We also show that unilateral expression of hsTRPA1 in mouse layer V motor cortical neurons leads to ultrasound-evoked contralateral limb responses to ultrasound delivered through an intact skull. Finally, ultrasound induces c-fos in hsTRPA1-expressing neurons, suggesting that our approach can be used for targeted activation of neural circuits. Together, our results demonstrate that hsTRPA1-based sonogenetics can effectively and non-invasively modulate neurons within the intact mammalian brain, a method that could be extended to other cell types across species.


Sign in / Sign up

Export Citation Format

Share Document