scholarly journals The Deposition of a Lectin from Oreochromis niloticus on the Surface of Titanium Dioxide Nanotubes Improved the Cell Adhesion, Proliferation, and Osteogenic Activity of Osteoblast-like Cells

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1748
Author(s):  
Keicyanne Fernanda Lessa dos Anjos ◽  
Cynarha Daysy Cardoso da Silva ◽  
Mary Angela Aranda de Souza ◽  
Alessandra Batista de Mattos ◽  
Luana Cassandra Breitenbach Barroso Coelho ◽  
...  

Titanium and its alloys are used as biomaterials for medical and dental applications, due to their mechanical and physical properties. Surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. In this work, titanium dioxide nanotubes (TiO2NTs) were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favor the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successful incorporation of OniL on the surface of TiO2NTs, by spin coating, was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE), and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2NTs were successfully synthesized in a regular and well-distributed way. The modification of TiO2NTs with OniL favored adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.

Author(s):  
Keicyanne Fernanda Lessa dos Anjos ◽  
Cynarha Daysy Cardoso da Silva ◽  
Mary Angela Aranda de Souza ◽  
Janaína Viana de Melo ◽  
Alessandra Batista de Mattos ◽  
...  

Titanium and its alloys are used biomaterials for medical and dental applications, due to their mechanical and physical properties. The surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. Titanium dioxide nanotubes (TiO2NTs) have excellent bioactivity inducing cell adhesion, spreading, growth and differentiation. In this work, TiO2NTs were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favour the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successfully incorporation of OniL on the surface of TiO2NTs by spin coating was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE) and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2-NTs were successfully synthesized in a regular and well-distributed way. The functionalization of TiO2-NTs with OniL favoured adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4269 ◽  
Author(s):  
Ewa Paradowska ◽  
Katarzyna Arkusz ◽  
Dorota G. Pijanowska

The increasing interest of attachment of gold nanoparticles (AuNPs) on titanium dioxide nanotubes (TNTs) has been devoted to obtaining tremendous properties suitable for biosensor applications. Achieving precise control of the attachment and shape of AuNPs by methods described in the literature are far from satisfactory. This work shows the comparison of physical adsorption (PA), cyclic voltammetry (CV) and chronoamperometry (CA) methods and the parameters of these methods on TNTs properties. The structural, chemical, phase and electrochemical characterizations of TNTs, Au/TNTs, AuNPs/TNTs are carried out using scanning electron microscopy (SEM), electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The use of PA methods does not allow the deposition of AuNPs on TNTs. CV allows easily obtaining spherical nanoparticles, for which the diameter increases from 20.3 ± 2.9 nm to 182.3 ± 51.7 nm as a concentration of tetrachloroauric acid solution increase from 0.1 mM to 10 mM. Increasing the AuNPs deposition time in the CA method increases the amount of gold, but the AuNPs diameter does not change (35.0 ± 5 nm). Importantly, the CA method also causes the dissolution of the nanotubes layer from 1000 ± 10.0 nm to 823 ± 15.3 nm. Modification of titanium dioxide nanotubes with gold nanoparticles improved the electron transfer and increased the corrosion resistance, as well as promoted the protein adsorption. Importantly, after the deposition of bovine serum albumin, an almost 5.5-fold (324%) increase in real impedance, compared to TNTs (59%) was observed. We found that the Au nanoparticles—especially those with smaller diameter—promoted the stability of bovine serum albumin binding to the TNTs platform. It confirms that the modification of TNTs with gold nanoparticles allows the development of the best platform for biosensing applications.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 138 ◽  
Author(s):  
Ewa Paradowska ◽  
Katarzyna Arkusz ◽  
Dorota G. Pijanowska

The goal of this research was to find the best conditions to prepare titanium dioxide nanotubes (TNTs) modified with gold nanoparticles (AuNPs). This paper, for the first time, reports on the influence of the parameters of cyclic voltammetry process (CV) -based AuNP deposition, i.e., the number of cycles and the concentration of gold salt solution, on corrosion resistance and the capacitance of TNTs. Another innovation was to fabricate AuNPs with well-formed spherical geometry and uniform distribution on TNTs. The AuNPs/TNTs were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and open-circuit potential measurement. From the obtained results, the correlation between the deposition process parameters, the AuNP diameters, and the electrical conductivity of the TNTs was found in a range from 14.3 ± 1.8 to 182.3 ± 51.7 nm. The size and amount of the AuNPs could be controlled by the number of deposition cycles and the concentration of the gold salt solution. The modification of TNTs using AuNPs facilitated electron transfer, increased the corrosion resistance, and caused better adsorption properties for bovine serum albumin.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1072 ◽  
Author(s):  
Nycz ◽  
Arkusz ◽  
Pijanowska

This paper presents the comparison of the effects of three methods of production of silver spherical and near-spherical nanoparticles (AgNPs) on the titanium dioxide nanotubes (TNT) base: cyclic voltammetry, chronoamperometry, and sputter deposition. It also evaluates the influence of silver nanoparticles on the electrochemical properties of the developed electrodes. The novelty of this research was to fabricate regular AgNPs free of agglomerates uniformly distributed onto the TNT layer, which has not been accomplished with previous attempts. The applied methods do not require stabilizing and reducing reagents. The extensive electrochemical characteristic of AgNP/TNT was performed by open circuit potential and electrochemical impedance spectroscopy methods. For AgNPs/TNT obtained by each method, the impedance module of these electrodes was up to 50% lower when compared to TNT, which means that AgNPs enabled more efficient electron transfer due to the effective area increase. In addition, the presence of nanoparticles increases the corrosion resistance of the prepared electrodes. These substrates can be used as electrochemical sensors due to their high electrical conductivity, and also as implants due to the antibacterial properties of both the TNT and AgNPs.


Author(s):  
Surendra Gulla ◽  
Dakshayani Lomada ◽  
Prasanna Babu Araveti ◽  
Anand Srivastava ◽  
Mamatha Kumari Murikinati ◽  
...  

2021 ◽  
Vol 90 ◽  
Author(s):  
Andrey Andreevich Rempel ◽  
Al′bina Akhmetovna Valeeva ◽  
Alexander Sergeevich Vokhmintsev ◽  
Ilya Alexandrovich Weinstein

Sign in / Sign up

Export Citation Format

Share Document