scholarly journals Inhibition of Autophagy Promotes Hemistepsin A-Induced Apoptosis via Reactive Oxygen Species-Mediated AMPK-Dependent Signaling in Human Prostate Cancer Cells

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1806
Author(s):  
Kwang-Youn Kim ◽  
Un-Jung Yun ◽  
Seung-Hee Yeom ◽  
Sang-Chan Kim ◽  
Hu-Jang Lee ◽  
...  

Chemotherapy is an essential strategy for cancer treatment. On the other hand, consistent exposure to chemotherapeutic drugs induces chemo-resistance in cancer cells through a variety of mechanisms. Therefore, it is important to develop a new drug inhibiting chemo-resistance. Although hemistepsin A (HsA) is known to have anti-tumor effects, the molecular mechanisms of HsA-mediated cell death are unclear. Accordingly, this study examined whether HsA could induce apoptosis in aggressive prostate cancer cells, along with its underlying mechanism. Using HsA on two prostate cancer cell lines, PC-3 and LNCaP cells, the cell analysis and in vivo xenograft model were assayed. In this study, HsA induced apoptosis and autophagy in PC-3 cells. HsA-mediated ROS production attenuated HsA-induced apoptosis and autophagy after treatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, autophagy inhibition by 3-MA or CQ is involved in accelerating the apoptosis induced by HsA. Furthermore, we showed the anti-tumor effects of HsA in mice, as assessed by the reduced growth of the xenografted tumors. In conclusion, HsA induced apoptosis and ROS generation, which were blocked by protective autophagy signaling.

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Navatha Shree Polavaram ◽  
Samikshan Dutta ◽  
Ridwan Islam ◽  
Arup K. Bag ◽  
Sohini Roy ◽  
...  

AbstractUnderstanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.


2018 ◽  
Vol 50 (2) ◽  
pp. 798-809 ◽  
Author(s):  
Gang Shen ◽  
Jianchun Chen ◽  
Yongqiang Zhou ◽  
Zhenfan Wang ◽  
Zheng Ma ◽  
...  

Backgrounds/Aims: Bromodomain-containing protein 4 (BRD4) overexpression participates in prostate cancer progression by enhancing the transcriptional activity and expression of several key oncogenes. AZD5153 is a novel BRD4 inhibitor. Methods: Prostate cancer cells were treated with AZD5153. Cell survival was tested by MTT assay and clonogenicity assay. Cell proliferation was tested by [H3] DNA incorporation assay. Cell apoptosis was tested by caspase-3/-9 activity assay, Histone DNA ELISA assay, Annexin V FACS assay and TUNEL staining assay. Cell cycle progression was tested by propidium iodide (PI) FACS assay. Signaling was tested by Western blotting assay. The nude mice PC-3 xenograft model was applied to test AZD5153’s activity in vivo. Results: AZD5153 inhibited proliferation and survival of established and primary prostate cancer cells. AZD5153 induced apoptosis activation and cell cycle arrest in prostate cancer cells. AZD5153 was non-cytotoxic to the prostate epithelial cells. AZD5153 downregulated BRD4 targets (cyclin D1, Myc, Bcl-2, FOSL1 and CDK4) in PC-3 and primary prostate cancer cells. Further studies show that AKT could be the primary resistance factor of AZD5153. Pharmacological inhibition or genetic depletion of AKT induced BRD4 downregulation, sensitizing AZD5153-induced cytotoxicity in PC-3 cells. In vivo, AZD5153 oral administration inhibited PC-3 xenograft tumor growth in nude mice. Its anti-tumor activity was further enhanced with co-treatment of the AKT specific inhibitor MK-2206. Conclusion: Together, our results indicate a promising therapeutic value of the novel BRD4 inhibitor AZD5153 against prostate cancer cells.


2009 ◽  
Vol 8 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Perry A. Christian ◽  
Jeffery A. Thorpe ◽  
Steven R. Schwarze

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Zhang ◽  
Qiuzi Liu ◽  
Wei Wei ◽  
Guoan Zhang ◽  
Siyuan Yan ◽  
...  

Abstract Background Bortezomib (BZM), alone or in combination with other chemotherapies, has displayed strong anticancer effects in several cancers. The efficacy of the combination of BZM and mitoxantrone (MTX) in treating prostate cancer remains unknown. Methods Anticancer effects of combination of BZM and MTX were determined by apoptosis and proliferation assay in vivo and in vitro. Expression of β-Catenin and its target genes were characterized by western blot and Real-time PCR. Results BZM significantly enhanced MTX-induced antiproliferation in vivo and in vitro. Mice administered a combination of BZM and MTX displayed attenuated tumor growth and prolonged survival. BZM significantly attenuated MTX-induced apoptosis. Moreover, the combination of BZM and MTX contributed to inhibition of the Wnt/β-Catenin signaling pathway compared to monotherapy. Conclusions This study demonstrates that BZM enhances MTX-induced anti-tumor effects by inhibiting the Wnt/β-Catenin signaling pathway in prostate cancer cells.


BMB Reports ◽  
2005 ◽  
Vol 38 (6) ◽  
pp. 639-645 ◽  
Author(s):  
Anatilde M. Gonzalez-Guerrico ◽  
John Meshki ◽  
Liqing Xiao ◽  
Fernando Benavides ◽  
Claudio J. Conti ◽  
...  

2019 ◽  
Vol 20 (13) ◽  
pp. 3220 ◽  
Author(s):  
Dae Gun Choi ◽  
Jayachandran Venkatesan ◽  
Min Suk Shim

Pro-oxidant therapy exploiting pro-oxidant drugs that can trigger cytotoxic oxidative stress in cancer cells has emerged as an innovative strategy for cancer-specific therapy. Piperlongumine (PL) has gained great interest as a novel pro-oxidant agent, because it has an ability to trigger cancer-specific apoptosis through the increase of oxidative stress in cancer cells. However, the use of PL is limited in the clinic because of its hydrophobic nature. In this study, chitosan- and fucoidan-based nanoparticles were prepared for the effective intracellular delivery of PL into cancer cells. Chitosan and fucoidan formed nanoparticles by ionic gelation. The chitosan- and fucoidan-based nanoparticles (CS–F NPs) effectively encapsulated PL, and increased its water solubility and bioavailability. CS–F NPs showed very low cytotoxicity in human prostate cancer cells, demonstrating its high potential for in vivo applications. The PL-loaded chitosan–fucoidan nanoparticles (PL-CS–F NPs) efficiently killed human prostate cancer cells via PL-induced intracellular reactive oxygen species (ROS) generation. This study demonstrates that CS–F NPs are promising natural polymer-based drug carriers for safe and effective PL delivery.


Sign in / Sign up

Export Citation Format

Share Document