scholarly journals The Patent Eligibility of 3D Bioprinting: Towards a New Version of Living Inventions’ Patentability

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 124
Author(s):  
Nabeel M. Althabhawi ◽  
Zinatul Ashiqin Zainol

A combination of 3D printing techniques and synthetic biology, 3D bioprinting is a promising field. It is expected that 3D bioprinting technologies will have applications across an array of fields, spanning biotechnology, medical surgery and the pharmaceutical industry. Nonetheless, the progress of these technologies could be hindered, unless there is adequate and effective protection for related applications. In this article, the authors examine the patent eligibility of 3D bioprinting technologies. This issue raises concern given that existing patent systems are generally averse to nature-derived inventions and many of them exclude products of nature or discoveries from patentability. This qualitative study analyses the current patent systems in key jurisdictions, particularly, the U.S. and the EU, and their applicability, as well as effectiveness, in the context of 3D bioprinting. The study argues that the main reason for the apathy of existing patent systems towards bio-inventions is that they were designed to deal with mechanical inventions. It suggests an innovation framework that encompasses both mechanical and biological inventions to cater adequately to emerging technologies.

2018 ◽  
Vol 8 (12) ◽  
pp. 2631 ◽  
Author(s):  
Raphaël Wenger ◽  
Marie-Noëlle Giraud

The broad clinical use of synthetic vascular grafts for vascular diseases is limited by their thrombogenicity and low patency rate, especially for vessels with a diameter inferior to 6 mm. Alternatives such as tissue-engineered vascular grafts (TEVGs), have gained increasing interest. Among the different manufacturing approaches, 3D bioprinting presents numerous advantages and enables the fabrication of multi-scale, multi-material, and multicellular tissues with heterogeneous and functional intrinsic structures. Extrusion-, inkjet- and light-based 3D printing techniques have been used for the fabrication of TEVG out of hydrogels, cells, and/or solid polymers. This review discusses the state-of-the-art research on the use of 3D printing for TEVG with a focus on the biomaterials and deposition methods.


Author(s):  
Raphael Wenger ◽  
Marie-Noëlle Giraud

Abstract: The broad clinical use of synthetic vascular grafts for vascular diseases is limited by their thrombogenicity and low patency rate, especially for vessels with a diameter inferior to 6 mm. Alternatives such as tissue-engineered blood grafts (TEBGs) have gained increasing interest. Among the different manufacturing approaches, 3D bioprinting presents numerous advantages and enables the fabrication of multi-scale, multi-material, and multicellular tissues with heterogeneous and functional intrinsic structures. Extrusion-, inkjet- and light-based 3D printing techniques have been used for the fabrication of TEBG out of hydrogels, cells, and/or solid polymers. This review discusses the state-of-the-art research on the use of 3D printing for TEBG with a focus on the biomaterials and deposition methods.


Revolution in 3D bioprinting advancing so quickly. Our special interest is focused on 3D bio printing, the printing of mammalian or human body parts. Very close to this term is cloneprint. The 3D printing living tissues is real and may be widely available in the near future. This emerging technology has generated controversies about its regulation. Another equally important issue is whether bioprinting is patentable. The U.S. Patent and Trademark Office (Patent Office) has already granted some bioprinting patents and many more applications that pending on a patent. This chapter highlighting these issues that can be part of our future.


2017 ◽  
Vol 18 (3) ◽  
Author(s):  
David Bender ◽  
Joseph Jones ◽  
Mark Young ◽  
Hendrike Wulfert-Markert

Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 164-181
Author(s):  
Joyita Sarkar ◽  
Swapnil C. Kamble ◽  
Nilambari C. Kashikar

Three-dimensional (3D) printing techniques have revolutionized the field of tissue engineering. This is especially favorable to construct intricate tissues such as liver, as 3D printing allows for the precise delivery of biomaterials, cells and bioactive molecules in complex geometries. Bioinks made of polymers, of both natural and synthetic origin, have been very beneficial to printing soft tissues such as liver. Using polymeric bioinks, 3D hepatic structures are printed with or without cells and biomolecules, and have been used for different tissue engineering applications. In this review, with the introduction to basic 3D printing techniques, we discuss different natural and synthetic polymers including decellularized matrices that have been employed for the 3D bioprinting of hepatic structures. Finally, we focus on recent advances in polymeric bioinks for 3D hepatic printing and their applications. The studies indicate that much work has been devoted to improvising the design, stability and longevity of the printed structures. Others focus on the printing of tissue engineered hepatic structures for applications in drug screening, regenerative medicine and disease models. More attention must now be diverted to developing personalized structures and stem cell differentiation to hepatic lineage.


2004 ◽  
Vol 49 (1-2) ◽  
pp. 1-27 ◽  
Author(s):  
Gunnar Niels ◽  
Adriaan ten Kate
Keyword(s):  
The U.S ◽  

2021 ◽  
pp. 128469
Author(s):  
Themistoklis Sfetsas ◽  
Stefanos Patsatzis ◽  
Afroditi Chioti

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3149
Author(s):  
Angelika Zaszczyńska ◽  
Maryla Moczulska-Heljak ◽  
Arkadiusz Gradys ◽  
Paweł Sajkiewicz

Tissue engineering (TE) scaffolds have enormous significance for the possibility of regeneration of complex tissue structures or even whole organs. Three-dimensional (3D) printing techniques allow fabricating TE scaffolds, having an extremely complex structure, in a repeatable and precise manner. Moreover, they enable the easy application of computer-assisted methods to TE scaffold design. The latest additive manufacturing techniques open up opportunities not otherwise available. This study aimed to summarize the state-of-art field of 3D printing techniques in applications for tissue engineering with a focus on the latest advancements. The following topics are discussed: systematics of the available 3D printing techniques applied for TE scaffold fabrication; overview of 3D printable biomaterials and advancements in 3D-printing-assisted tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document