scholarly journals Unfolding Thermodynamics of Cysteine-Rich Proteins and Molecular Thermal-Adaptation of Marine Ciliates

Biomolecules ◽  
2013 ◽  
Vol 3 (4) ◽  
pp. 967-985 ◽  
Author(s):  
Giorgia Cazzolli ◽  
Tatjana Škrbić ◽  
Graziano Guella ◽  
Pietro Faccioli
Neurobiology ◽  
2001 ◽  
Vol 9 (1) ◽  
pp. 61-62 ◽  
Author(s):  
M. Balaskó ◽  
M. Székely

2014 ◽  
Vol 51 (6) ◽  
pp. 539-545 ◽  
Author(s):  
Jennifer Kemp ◽  
Olivier Després ◽  
Thierry Pebayle ◽  
André Dufour

2021 ◽  
Vol 85 (5) ◽  
pp. 1243-1251
Author(s):  
Nami Matsumoto ◽  
Naoki Osumi ◽  
Minenosuke Matsutani ◽  
Theerisara Phathanathavorn ◽  
Naoya Kataoka ◽  
...  

ABSTRACT Thermotolerant microorganisms are useful for high-temperature fermentation. Several thermally adapted strains were previously obtained from Acetobacter pasteurianus in a nutrient-rich culture medium, while these adapted strains could not grow well at high temperature in the nutrient-poor practical culture medium, “rice moromi.” In this study, A. pasteurianus K-1034 originally capable of performing acetic acid fermentation in rice moromi was thermally adapted by experimental evolution using a “pseudo” rice moromi culture. The adapted strains thus obtained were confirmed to grow well in such the nutrient-poor media in flask or jar-fermentor culture up to 40 or 39 °C; the mutation sites of the strains were also determined. The high-temperature fermentation ability was also shown to be comparable with a low-nutrient adapted strain previously obtained. Using the practical fermentation system, “Acetofermenter,” acetic acid production was compared in the moromi culture; the results showed that the adapted strains efficiently perform practical vinegar production under high-temperature conditions.


2021 ◽  
Vol 13 (11) ◽  
pp. 5949
Author(s):  
Teresa Cuerdo-Vilches ◽  
Miguel Ángel Navas-Martín ◽  
Ignacio Oteiza

During spring 2020, the world was shocked at the imminent global spread of SARS-CoV-2, resorting to measures such as domestic confinement. This meant the reconfiguration of life in an unusual space; the home. However, not all households experienced it in the same way; many of them were vulnerable. A general increase in energy consumption and discomfort in many cases, led these families to suffer the ravages of confinement. This study analyzes the energy and comfort situation for the Madrid (Spain) population, according to the configuration of the homes, the characteristics of the dwellings, the vulnerability index by district, and energy poverty (measured with the 10% threshold of energy expenditure of home incomes). The results show a greater exposure, in confinement, of vulnerable and energy-poor households to scenarios of discomfort in the home, to which they could not respond, while energy consumption inevitably increased. Driven by need, energy-poor homes applied certain saving strategies, mainly resorting to thermal adaptation with clothing. This study shows the risk these households experienced in the face of an extreme situation, and invites reflection on preventive and containment measures that aim to avoid harming the disadvantaged in the future; harm that would also entail serious consequences on the health of their cohabitants.


Biomimetics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 50
Author(s):  
Negin Imani ◽  
Brenda Vale

The initial aim of the research was to develop a framework that would enable architects to look for thermoregulation methods in nature as inspiration for designing energy efficient buildings. The thermo-bio-architectural framework (ThBA) assumes designers will start with a thermal challenge in a building and then look in a systematic way for how this same issue is solved in nature. The tool is thus a contribution to architectural biomimicry in the field of building energy use. Since the ThBA was created by an architect, it was essential that the biology side of this cross-disciplinary tool was validated by experts in biology. This article describes the focus group that was conducted to assess the quality, inclusiveness, and applicability of the framework and why a focus group was selected over other possible methods such as surveys or interviews. The article first provides a brief explanation of the development of the ThBA. Given the focus here is on its validation, the qualitative data collection procedures and analysis results produced by NVivo 12 plus through thematic coding are described in detail. The results showed the ThBA was effective in bridging the two fields based on the existing thermal challenges in buildings, and was comprehensive in terms of generalising biological thermal adaptation strategies.


Genome ◽  
2014 ◽  
Vol 57 (9) ◽  
pp. 481-488 ◽  
Author(s):  
Goran Zivanovic ◽  
Conxita Arenas ◽  
Francesc Mestres

Using a well-adapted Drosophila subobscura population (Avala, Serbia), a drastic experiment of inbreeding was carried out to assess whether the expected level of homozygosity could be reached or if other evolutionary forces affected the process. In general, no significant changes of inversion (or arrangement) frequencies were detected after 12 brother–sister mating generations. Furthermore, no significant differences were obtained between observed and expected (under the inbreeding model) karyotypic frequencies. Thus, these results seemed to indicate that the main evolutionary factor in the experiment was inbreeding. However, in the G12 generation, complete chromosomal fixation was reached only in two out of the eight final inbred lines. In these lines, the chromosomal compositions were difficult to interpret, but they could be likely a consequence of adaptation to particular laboratory conditions (constant 18 °C, food, light period, etc.). Finally, in a second experiment, the inbred lines presented higher fertility at 18 °C than at 13 °C. Also, there was a significant line effect on fertility: inbred line number 6 (A1, J1, U1+2; U1+2+6, E8, and O3+4+7) presented the highest values, which maybe the result of an adaptation to laboratory conditions. Thus, the results obtained in our experiments reflect the adaptive potential of D. subobscura inversions.


Sign in / Sign up

Export Citation Format

Share Document