scholarly journals The Organization of Somatostatin-Immunoreactive Cells in the Visual Cortex of the Gerbil

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Kyung-Min Kwon ◽  
Myung-Jun Lee ◽  
Han-Saem Chung ◽  
Jae-Hong Pak ◽  
Chang-Jin Jeon

Somatostatin (SST) is widely expressed in the brain and plays various, vital roles involved in neuromodulation. The purpose of this study is to characterize the organization of SST neurons in the Mongolian gerbil visual cortex (VC) using immunocytochemistry, quantitative analysis, and confocal microscopy. As a diurnal animal, the Mongolian gerbil provides us with a different perspective to other commonly used nocturnal rodent models. In this study, SST neurons were located in all layers of the VC except in layer I; they were most common in layer V. Most SST neurons were multipolar round/oval or stellate cells. No pyramidal neurons were found. Moreover, 2-color immunofluorescence revealed that only 33.50%, 24.05%, 16.73%, 0%, and 64.57% of SST neurons contained gamma-aminobutyric acid, calbindin-D28K, calretinin, parvalbumin, and calcium/calmodulin-dependent protein kinase II, respectively. In contrast, neuropeptide Y and nitric oxide synthase were abundantly expressed, with 80.07% and 75.41% in SST neurons, respectively. Our immunocytochemical analyses of SST with D1 and D2 dopamine receptors and choline acetyltransferase, α7 and β2 nicotinic acetylcholine receptors suggest that dopaminergic and cholinergic fibers contact some SST neurons. The results showed some distinguishable features of SST neurons and provided some insight into their afferent circuitry in the gerbil VC. These findings may support future studies investigating the role of SST neurons in visual processing.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 311
Author(s):  
Myung-Jun Lee ◽  
Won-Tae Lee ◽  
Chang-Jin Jeon

Neuropeptide Y (NPY) is found throughout the central nervous system where it appears to be involved in the regulation of a wide range of physiological effects. The Mongolian gerbil, a member of the rodent family Muridae, is a diurnal animal and has been widely used in various aspects of biomedical research. This study was conducted to investigate the organization of NPY-immunoreactive (IR) neurons in the gerbil visual cortex using NPY immunocytochemistry. The highest density of NPY-IR neurons was located in layer V (50.58%). The major type of NPY-IR neuron was a multipolar round/oval cell type (44.57%). Double-color immunofluorescence revealed that 89.55% and 89.95% of NPY-IR neurons contained gamma-aminobutyric acid (GABA) or somatostatin, respectively. Several processes of the NPY-IR neurons surrounded GABAergic interneurons. Although 30.81% of the NPY-IR neurons contained calretinin, NPY and calbindin-D28K-IR neurons were co-expressed rarely (3.75%) and NPY did not co-express parvalbumin. Triple-color immunofluorescence with anti-GluR2 or CaMKII antibodies suggested that some non-GABAergic NPY-IR neurons may make excitatory synaptic contacts. This study indicates that NPY-IR neurons have a notable architecture and are unique subpopulations of the interneurons of the gerbil visual cortex, which could provide additional valuable data for elucidating the role of NPY in the visual process in diurnal animals.


2011 ◽  
Vol 105 (1) ◽  
pp. 347-355 ◽  
Author(s):  
Giao B. Hang ◽  
Yang Dan

Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.


2019 ◽  
Vol 30 (1) ◽  
pp. 148-164 ◽  
Author(s):  
Adrienne Mueller ◽  
Rebecca M Krock ◽  
Steven Shepard ◽  
Tirin Moore

Abstract Dopaminergic modulation of prefrontal cortex plays an important role in numerous cognitive processes, including attention. The frontal eye field (FEF) is modulated by dopamine and has an established role in visual attention, yet the underlying circuitry upon which dopamine acts is not known. We compared the expression of D1 and D2 dopamine receptors (D1Rs and D2Rs) across different classes of FEF neurons, including those projecting to dorsal or ventral extrastriate cortex. First, we found that both D1Rs and D2Rs are more prevalent on pyramidal neurons than on several classes of interneurons and are particularly prevalent on putatively long-range projecting pyramidals. Second, higher proportions of pyramidal neurons express D1Rs than D2Rs. Third, overall a higher proportion of inhibitory neurons expresses D2Rs than D1Rs. Fourth, among inhibitory interneurons, a significantly higher proportion of parvalbumin+ neurons expresses D2Rs than D1Rs, and a significantly higher proportion of calbindin+ neurons expresses D1Rs than D2Rs. Finally, compared with D2Rs, virtually all of the neurons with identified projections to both dorsal and ventral extrastriate visual cortex expressed D1Rs. Our results demonstrate that dopamine tends to act directly on the output of the FEF and that dopaminergic modulation of top-down projections to visual cortex is achieved predominately via D1Rs.


2001 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
NINA A. DMITRIEVA ◽  
JON M. LINDSTROM ◽  
KENT T. KEYSER

As a part of ongoing efforts to understand the cholinergic circuitry in the mammalian retina, we studied the coexpression of nicotinic acetylcholine receptors (nAChRs) and gamma-aminobutyric acid (GABA), the GABA transporter 1 (GAT-1), or choline acetyltransferase (ChAT) immunoreactivity in the rabbit retina. Double-label experiments with monoclonal antibody 210 (mAb 210) against nAChRs and antibodies against GABA revealed that several populations of GABA-containing amacrine, displaced amacrine, and ganglion cells displayed nAChR immunoreactivity. Some of them also exhibited ChAT immunoreactivity and were identified as the cholinoceptive starburst cells. Other GABAergic amacrine cells positive for mAb 210 were not cholinergic. Simultaneous visualization of mAb 210 and GAT-1 immunoreactivity revealed that 10% of GAT-1 immunoreactive amacrine cells contained nAChRs. Ninety-nine percent of the GAT-1 labeled cells demonstrated GABA immunoreactivity, but only 75% of the GABAergic cells were outlined by GAT-1 staining. Neither population of starburst cells exhibited GAT-1 immunoreactivity. Thus, mAb 210 expressing, GAT-1 positive cells in the rabbit retina constitute a noncholinergic subset of GABAergic amacrine cells. Taken together, our results suggest that some GABAergic amacrine cells are cholinoceptive, raising the possibility that ACh, acting through nAChRs, can modulate the release of GABA in the rabbit retina.


Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 110-113 ◽  
Author(s):  
A. E. Gaydukov ◽  
O. P. Balezina

We investigated the involvement of calcium-dependent enzymes, protein kinase C (PKC) and calcium-calmodulin-dependent protein kinase II (CaMKII), in the signaling pathway triggered by the activation of presynaptic alpha7-type nicotinic acetylcholine receptors by exogenous choline, leading to downregulation of the evoked acetylcholine (ACh) release in mouse motor synapses. Blockade of PKC with chelerythrine neither changed the evoked release of ACh by itself nor prevented the inhibitory effect of choline. The CaMKII blocker KN-62 did not affect synaptic activity but fully prevented the choline-induced downregulation of ACh release.


Sign in / Sign up

Export Citation Format

Share Document