scholarly journals Orthosiphon stamineus Standardized Extract Reverses Streptozotocin-Induced Alzheimer’s Disease-Like Condition in a Rat Model

Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 104
Author(s):  
Thaarvena Retinasamy ◽  
Mohd. Farooq Shaikh ◽  
Yatinesh Kumari ◽  
Syafiq Asnawi Zainal Abidin ◽  
Iekhsan Othman

Alzheimer’s disease (AD) is a chronic neurodegenerative brain disease that is characterized by impairment in cognitive functioning as well as the presence of intraneuronal neurofibrillary tangles (NFTs) and extracellular senile plaques. There is a growing interest in the potential of phytochemicals to improve memory, learning, and general cognitive abilities. The Malaysian herb Orthosiphon stamineus is a traditional remedy that possesses anti-inflammatory, anti-oxidant, and free-radical scavenging abilities, all of which are known to protect against AD. Previous studies have reported that intracerebroventricular (ICV) administration of streptozotocin (STZ) mimics a condition similar to that observed in AD. This experiment thus aimed to explore if an ethanolic leaf extract of O. stamineus has the potential to be a novel treatment for AD in a rat model and can reverse the STZ- induced learning and memory dysfunction. The results of this study indicate that O. stamineus has the potential to be potentially effective against AD-like condition, as both behavioral models employed in this study was observed to be able to reverse memory impairment. Treatment with the extract was able to decrease the up-regulated expression levels of amyloid precursor protein (APP), microtubule associated protein tau (MAPT), Nuclear factor kappa-light-chain-enhancer of activated B cells (NFᴋB), glycogen synthase kinase 3 alpha (GSK3α), and glycogen synthase kinase 3 beta (GSK3β) genes indicating the extract’s neuroprotective ability. These research findings suggest that the O. stamineus ethanolic extract demonstrated an improved effect on memory, and hence, could serve as a potential therapeutic target for the treatment of neurodegenerative diseases such as AD.

2002 ◽  
Vol 103 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Allal Boutajangout ◽  
Karelle Leroy ◽  
Authelet M. ◽  
Brian Anderton ◽  
Jean-Pierre Brion ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jari Koistinaho ◽  
Tarja Malm ◽  
Gundars Goldsteins

Proliferation and activation of microglial cells is a neuropathological characteristic of brain injury and neurodegeneration, including Alzheimer's disease. Microglia act as the first and main form of immune defense in the nervous system. While the primary function of microglia is to survey and maintain the cellular environment optimal for neurons in the brain parenchyma by actively scavenging the brain for damaged brain cells and foreign proteins or particles, sustained activation of microglia may result in high production of proinflammatory mediators that disturb normal brain functions and even cause neuronal injury. Glycogen synthase kinase-3βhas been recently identified as a major regulator of immune system and mediates inflammatory responses in microglia. Glycogen synthase kinase-3βhas been extensively investigated in connection to tau and amyloidβtoxicity, whereas reports on the role of this enzyme in neuroinflammation in Alzheimer's disease are negligible. Here we review and discuss the role of glycogen synthase-3βin immune cells in the context of Alzheimer's disease pathology.


Sign in / Sign up

Export Citation Format

Share Document