scholarly journals Improving Generation of Cardiac Organoids from Human Pluripotent Stem Cells Using the Aurora Kinase Inhibitor ZM447439

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1952
Author(s):  
Su-Jin Lee ◽  
Hyeon-A Kim ◽  
Sung-Joon Kim ◽  
Hyang-Ae Lee

Drug-induced cardiotoxicity reduces the success rates of drug development. Thus, the limitations of current evaluation methods must be addressed. Human cardiac organoids (hCOs) derived from induced pluripotent stem cells (hiPSCs) are useful as an advanced drug-testing model; they demonstrate similar electrophysiological functionality and drug reactivity as the heart. How-ever, similar to other organoid models, they have immature characteristics compared to adult hearts, and exhibit batch-to-batch variation. As the cell cycle is important for the mesodermal differentiation of stem cells, we examined the effect of ZM447439, an aurora kinase inhibitor that regulates the cell cycle, on cardiogenic differentiation. We determined the optimal concentration and timing of ZM447439 for the differentiation of hCOs from hiPSCs and developed a novel protocol for efficiently and reproducibly generating beating hCOs with improved electrophysiological functionality, contractility, and yield. We validated their maturity through electro-physiological- and image-based functional assays and gene profiling with next-generation sequencing, and then applied these cells to multi-electrode array platforms to monitor the cardio-toxicity of drugs related to cardiac arrhythmia; the results confirmed the drug reactivity of hCOs. These findings may enable determination of the regulatory mechanism of cell cycles underlying the generation of iPSC-derived hCOs, providing a valuable drug testing platform.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yukti Choudhury ◽  
Yi Chin Toh ◽  
Jiangwa Xing ◽  
Yinghua Qu ◽  
Jonathan Poh ◽  
...  

Abstract Idiosyncratic drug-induced hepatotoxicity is a major cause of liver damage and drug pipeline failure, and is difficult to study as patient-specific features are not readily incorporated in traditional hepatotoxicity testing approaches using population pooled cell sources. Here we demonstrate the use of patient-specific hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells for modeling idiosyncratic hepatotoxicity to pazopanib (PZ), a tyrosine kinase inhibitor drug associated with significant hepatotoxicity of unknown mechanistic basis. In vitro cytotoxicity assays confirmed that HLCs from patients with clinically identified hepatotoxicity were more sensitive to PZ-induced toxicity than other individuals, while a prototype hepatotoxin acetaminophen was similarly toxic to all HLCs studied. Transcriptional analyses showed that PZ induces oxidative stress (OS) in HLCs in general, but in HLCs from susceptible individuals, PZ causes relative disruption of iron metabolism and higher burden of OS. Our study establishes the first patient-specific HLC-based platform for idiosyncratic hepatotoxicity testing, incorporating multiple potential causative factors and permitting the correlation of transcriptomic and cellular responses to clinical phenotypes. Establishment of patient-specific HLCs with clinical phenotypes representing population variations will be valuable for pharmaceutical drug testing.


Author(s):  
Fatma Sogutlu ◽  
Cagla Kayabasi ◽  
Besra Ozmen Yelken ◽  
Aycan Asik ◽  
Roya Gasimli ◽  
...  

Background: Dysregulation of the cell cycle is one of the main causes of melanomagenesis. Genome-wide studies showed that expression of Aurora -A and -B significantly has been upregulated in melanoma. However, there is no FDA approved drug targeting aurora kinases in the treatment of melanoma. In addition, the development of resistance to chemotherapeutic agents in the treatment of melanoma and, as a result, the relapse due to heterogeneous cell groups in patients is a second phenomenon that causes treatment failure. Therefore, there is an urgent need for therapeutic alternatives targeting both melanoma and melanoma cancer stem cells (MCSCs) in treatments. At this stage, cell cycle regulators become promising targets. Objective: In this study, we aimed to identify the effects of Aurora kinase inhibitor CCT137690 on the cytotoxicity, apoptosis, cell cycle, migration, and colony formation and expression changes of genes related to proliferation, cell death and cell cycle in melanoma and melanoma cancer stem cell. In addition, we investigated the apoptotic and cytostatic effects of CCT137690 in normal fibroblast cells. Methods: We evaluated the cytotoxic effect of CCT137690 in MCSCs, NM2C5 referring as melanoma model cells and WI38 cells by using the WST-1 test. The effect of CCT137690 on apoptosis was detected via Annexin V and JC-1 method; on cell cycle progression by cell cycle test; on gene expression by using RT-PCR, on migration activity by wound healing assay and clonal growth by clonogenic assay in NM2C5 cells and MCSCs. The effects of CCT137690 in WI-38, referring as healthy fibroblast cell, were assessed through Annexin V and cell cycle method. Results: CCT137690 was determined to have a cytotoxic and apoptotic effect in MCSCs and melanoma. It caused polyploidy and cell cycle arrest at the G2/M phase in MCSCs and melanoma cells. The significant decrease in the expression of MMP2, MMP7, MMP10, CCNB1, IRAK1, PLK2 genes, and the increase in the expression of PTEN, CASP7, p53 genes were detected. Conclusion: Aurora kinases inhibitor CCT137690 displays promising anticancer activity in melanoma and especially melanoma cancer stem cells. The effect of CCT137690 on melanoma and MCSC may provide a new approach to treatment protocols.


Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1498-1505 ◽  
Author(s):  
Jürgen den Hollander ◽  
Sara Rimpi ◽  
Joanne R. Doherty ◽  
Martina Rudelius ◽  
Andreas Buck ◽  
...  

Myc oncoproteins promote continuous cell growth, in part by controlling the transcription of key cell cycle regulators. Here, we report that c-Myc regulates the expression of Aurora A and B kinases (Aurka and Aurkb), and that Aurka and Aurkb transcripts and protein levels are highly elevated in Myc-driven B-cell lymphomas in both mice and humans. The induction of Aurka by Myc is transcriptional and is directly mediated via E-boxes, whereas Aurkb is regulated indirectly. Blocking Aurka/b kinase activity with a selective Aurora kinase inhibitor triggers transient mitotic arrest, polyploidization, and apoptosis of Myc-induced lymphomas. These phenotypes are selectively bypassed by a kinase inhibitor-resistant Aurkb mutant, demonstrating that Aurkb is the primary therapeutic target in the context of Myc. Importantly, apoptosis provoked by Aurk inhibition was p53 independent, suggesting that Aurka/Aurkb inhibitors will show efficacy in treating primary or relapsed malignancies having Myc involvement and/or loss of p53 function.


2020 ◽  
Vol 18 ◽  
pp. 491-503
Author(s):  
Jun-Dan Wang ◽  
Wei Zhang ◽  
Jing-Wen Zhang ◽  
Ling Zhang ◽  
Le-Xun Wang ◽  
...  

2014 ◽  
Vol 25 ◽  
pp. ii20
Author(s):  
Lin Zhong-Zhe ◽  
Chou Chia-Hung ◽  
Cheng Ann-Lii ◽  
Liu Wei-Lin ◽  
Cheng Jason Chia-Hsien

2014 ◽  
Vol 135 (2) ◽  
pp. 492-501 ◽  
Author(s):  
Zhong-Zhe Lin ◽  
Chia-Hung Chou ◽  
Ann-Lii Cheng ◽  
Wei-Lin Liu ◽  
Jason Chia-Hsien Cheng

Sign in / Sign up

Export Citation Format

Share Document