scholarly journals Maneuvering Performance in the Colonial Siphonophore, Nanomia bijuga

Biomimetics ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 62
Author(s):  
Kelly R. Sutherland ◽  
Brad J. Gemmell ◽  
Sean P. Colin ◽  
John H. Costello

The colonial cnidarian, Nanomia bijuga, is highly proficient at moving in three-dimensional space through forward swimming, reverse swimming and turning. We used high speed videography, particle tracking, and particle image velocimetry (PIV) with frame rates up to 6400 s−1 to study the kinematics and fluid mechanics of N. bijuga during turning and reversing. N. bijuga achieved turns with high maneuverability (mean length–specific turning radius, R/L = 0.15 ± 0.10) and agility (mean angular velocity, ω = 104 ± 41 deg. s−1). The maximum angular velocity of N. bijuga, 215 deg. s−1, exceeded that of many vertebrates with more complex body forms and neurocircuitry. Through the combination of rapid nectophore contraction and velum modulation, N. bijuga generated high speed, narrow jets (maximum = 1063 ± 176 mm s−1; 295 nectophore lengths s−1) and thrust vectoring, which enabled high speed reverse swimming (maximum = 134 ± 28 mm s−1; 37 nectophore lengths s−1) that matched previously reported forward swimming speeds. A 1:1 ratio of forward to reverse swimming speed has not been recorded in other swimming organisms. Taken together, the colonial architecture, simple neurocircuitry, and tightly controlled pulsed jets by N. bijuga allow for a diverse repertoire of movements. Considering the further advantages of scalability and redundancy in colonies, N. bijuga is a model system for informing underwater propulsion and navigation of complex environments.

2018 ◽  
Author(s):  
Kelly R. Sutherland ◽  
Sean P. Colin ◽  
John H. Costello ◽  
Brad J. Gemmell

AbstractCoordination of multiple propulsors can provide performance benefits in swimming organisms. Siphonophores are marine colonial organisms that orchestrate the motion of multiple swimming zooids for effective swimming. However, the kinematics at the level of individual swimming zooids (nectophores) have not been examined in detail. We used high speed, high resolution microvideography and particle image velocimetry (PIV) of the physonect siphonophore, Nanomia bijuga, to study the motion of the nectophores and the associated fluid motion during jetting and refilling. The integration of nectophore and velum kinematics allow for a high-speed (maximum ~1 m s−1), narrow (1-2 mm) jet and rapid refill as well as a 1:1 ratio of jetting to refill time. Overall swimming performance is enhanced by velocity gradients produced in the nectophore during refill, which lead to a high pressure region that produces forward thrust. Generating thrust during both the jet and refill phases augments the distance travelled by 17% over theoretical animals, which generate thrust only during the jet phase. The details of velum kinematics and associated fluid mechanics elucidate how siphonophores effectively navigate three-dimensional space and could be applied to exit flow parameters in multijet underwater vehicles.Summary statement:Colonial siphonophores produce high speed jets and generate forward thrust during refill using a flexible velum to achieve effective propulsion.


2012 ◽  
Vol 571 ◽  
pp. 618-621
Author(s):  
Qin Li ◽  
Fu Bao Li ◽  
Zhong Ke Li ◽  
De Xi Wang

In the Particle image velocimetry (PIV) measurement system, using the basic measurement principles of three-dimensional space position and splitting method, it, using a CCD camera, achieved the measurement to a space position. Light emitting diodes flash twice and image in the same CCD camera and space vector can be obtained directly by the image processing, and then three-dimensional velocity field can be obtained.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Mojtaba Forghani ◽  
Weicheng Huang ◽  
M. Khalid Jawed

Abstract In this paper, we analyze the inverse dynamics and control of a bacteria-inspired uniflagellar robot in a fluid medium at low Reynolds number. Inspired by the mechanism behind the locomotion of flagellated bacteria, we consider a robot comprising a flagellum—a flexible helical filament—connected to a spherical head. The flagellum rotates about the head at a controlled angular velocity and generates a propulsive force that moves the robot forward. When the angular velocity exceeds a threshold value, the hydrodynamic force exerted by the fluid can cause the soft flagellum to buckle, characterized by a dramatic change in its shape. In this computational study, a fluid–structure interaction model that combines Discrete Elastic Rods algorithm with Lighthill's Slender Body Theory is employed to simulate the locomotion and deformation of the robot. We demonstrate that the robot can follow a prescribed path in three-dimensional space by exploiting buckling of the flagellum. The control scheme involves only a single (binary) scalar input—the angular velocity of the flagellum. By triggering the buckling instability at the right moment, the robot can follow the path in three-dimensional space. We also show that the complexity of the dynamics of the helical filament can be captured using a deep neural network, from which we identify the input–output functional relationship between the control input and the trajectory of the robot. Furthermore, our study underscores the potential role of buckling in the locomotion of natural bacteria.


2020 ◽  
Vol 3 (6) ◽  
Author(s):  
Yongzhe Zhang ◽  
Jiachen Zheng

This paper adopts IMU motion recognition technology based on mechanical learning. IMU, inertial measurement unit, is a device that uses accelerometer and gyroscope to measure the three-axis attitude Angle (or angular velocity) and acceleration of an object. In a narrow sense, an IMU is equipped with gyroscope and accelerometer on three orthogonal axes, with a total of 6 degrees of freedom, to measure the angular velocity and acceleration of an object in three-dimensional space, which is known as "6-axis IMU". Broadly speaking, the IMU can add magnetometer to accelerometer and gyroscope to form the "9-axis IMU" which is now known to the public.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kaidong Tian ◽  
Bangji Zhang ◽  
Nong Zhang ◽  
Xuhui Liu ◽  
Jinchen Ji

A damper of the hydraulically interconnected suspension (HIS) system, as a quarter HIS, is prototyped and its damping characteristic is tested to characterize the damping property. The force-velocity characteristic of the prototype is analyzed based on a set of testing results and accordingly a piecewise hysteresis model for the damper is proposed. The proposed equivalent parametric model consists of two parts: hysteresis model in low speed region and saturation model in high speed region which are used to describe the hysteresis phenomenon in low speed and nonhysteresis phenomenon in high speed, respectively. The parameters of the model are identified based on genetic algorithm by setting the constraints of parameters according to their physical significances and the corresponding testing results. The advantages of the model are highlighted by comparing to the nonhysteresis model and the permanent hysteresis model. The numerical simulation results are compared with the testing results to validate the accuracy and effectiveness of the proposed model. Finally, to further verify the proposed model’s wide applicability under different excitation conditions, its results are compared to the testing results in three-dimensional space. The research in this paper is significant for the dynamic analysis of the HIS vehicle.


2019 ◽  
Vol 4 (33) ◽  
pp. eaax7112 ◽  
Author(s):  
Yusen Zhao ◽  
Chen Xuan ◽  
Xiaoshi Qian ◽  
Yousif Alsaid ◽  
Mutian Hua ◽  
...  

Oscillations are widely found in living organisms to generate propulsion-based locomotion often driven by constant ambient conditions, such as phototactic movements. Such environment-powered and environment-directed locomotions may advance fully autonomous remotely steered robots. However, most man-made oscillations require nonconstant energy input and cannot perform environment-dictated movement. Here, we report a self-sustained soft oscillator that exhibits perpetual and untethered locomotion as a phototactic soft swimming robot, remotely fueled and steered by constant visible light. This particular out-of-equilibrium actuation arises from a self-shadowing–enabled negative feedback loop inherent in the dynamic light–material interactions, promoted by the fast and substantial volume change of the photoresponsive hydrogel. Our analytical model and governing equation unveil the oscillation mechanism and design principle with key parameters identified to tune the dynamics. On this autonomous oscillator platform, we establish a broadly applicable principle for converting a continuous input into a discontinuous output. The modular design can be customized to accommodate various forms of input energy and to generate diverse oscillatory behaviors. The hydrogel oscillator showcases agile life-like omnidirectional motion in the entire three-dimensional space with near-infinite degrees of freedom. The large force generated by the powerful and long-lasting oscillation can sufficiently overcome water damping and effectively self-propel away from a light source. Such a hydrogel oscillator–based all-soft swimming robot, named OsciBot, demonstrated high-speed and controllable phototactic locomotion. This autonomous robot is battery free, deployable, scalable, and integratable. Artificial phototaxis opens broad opportunities in maneuverable marine automated systems, miniaturized transportation, and solar sails.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document