scholarly journals The Reaction Switching Produces A Greater Bias to Prepotent Response than Reaction Inhibition

2020 ◽  
Vol 10 (3) ◽  
pp. 188
Author(s):  
Kirill Fadeev ◽  
Tatyana Alikovskaia ◽  
Alexey Tumyalis ◽  
Alexey Smirnov ◽  
Kirill Golokhvast

There is a discussion about common or various mechanisms of response inhibition and response switching. To understand these mechanisms, we used a modified Go/NoGo task with three stimulus categories. The subjects were instructed to press a button in response to frequent Go stimuli, press another button in response to rare Go stimuli and hold any motor response following the presentation of NoGo stimuli. The results showed a decrease in reaction time for frequent Go, following both categories of rare stimuli and the decrease was greater following rare Go. Also, the total number of errors did not differ between Go and NoGo, however, a greater bias of error rate towards frequent Go stimuli was found for rare Go compared to NoGo. Finally, positive correlations were found between the increase in reaction time for rare Go compared to frequent Go and the number of errors for both rare Go and rare NoGo. Together, these results indicate that both rare Go and NoGo stimuli required to inhibit the prepotent response, but rare Go in comparison to NoGo stimuli also evoked a conflict between prepotent and alternative responses, which is expressed in greater response bias toward frequent Go.

2021 ◽  
Vol 92 (8) ◽  
pp. A8-A8
Author(s):  
N Skandali ◽  
BJ Sahakian ◽  
TWR Robbins ◽  
V Voon

ObjectivesImpulsivity is a multifaceted construct that involves a tendency to act prematurely with little foresight, reflection or control. Waiting impulsivity is one aspect of action impulsivity and is commonly studied in animals using tasks such as the 5-choice serial reaction time task (5CSRTT).1 It is neurochemically distinct from motor response inhibition defined as the ability to restrain or cancel a pre-potent motor response and measured with no-go and stop-signal tasks respectively.1 Serotonin modulates waiting impulsivity as decreased serotonergic transmission promotes premature responding in the rodent 5CSRT and the human analogue 4CSRT task.2 Potential mechanisms contributing to waiting impulsivity include proactive or tonic inhibition, motivational processes and sensitivity to feedback and delay.3 Higher waiting impulsivity in response to high reward cues was previously associated with greater subthalamic nucleus connectivity with orbitofrontal cortex and greater subgenual cingulate connectivity with anterior insula.4MethodsWe administered a clinically relevant dose of escitalopram (20mg) in healthy subjects in a double-blind, placebo-controlled, parallel-groups design study and assessed its effect on waiting impulsivity using the well-validated 4CSRT task. Compared to previous studies,2 4 we added another test block with increased potential gain to assess the interaction between premature responding and reward processing. We recruited sixty-six healthy participants who completed an extensive neuropsychological test battery assessing probabilistic reversal learning, set-shifting, response inhibition, emotional processing and waiting impulsivity. Sixty participants (N=60, 26 females, 34 males) completed the 4CSRT task with N=30 in the escitalopram and N=30 in the placebo group, due to technical errors and experienced side-effects for the remaining six participants. The results of the other cognitive tasks are reported separately.5ResultsEscitalopram increased premature responding in the high incentive condition of the 4CSRT task, p=.028, t= 2.275, this effect being driven by male participants, p=.019, t=2.532 (for females, p>.05). We further show that escitalopram increased premature responses after a premature response in the same block again in male participants only, p=.034, Mann-Whitney U= 61.500. We found no correlation between premature responding in the 4CSRT task, in any test block, and the Stop-signal reaction time, the primary measure of the stop-signal task completed by the same participants (reported in [5]).ConclusionsWe show that acute escitalopram increased premature responding in healthy male participants only in high incentive conditions potentially mediated potentially through an effect on increased incentive salience. We also show that acute escitalopram increased perseverative responding thus producing a maladaptive response strategy. We show no correlation between SSRT and premature responding in the same participants consistent with these two forms of impulsivity being neurochemically and anatomically distinct. We interpret our findings in the context of acute escitalopram decreasing serotonergic transmission in some brain areas through inhibitory actions on terminal 5-HT release mediated by auto-receptors on raphe 5-HT neurons analogous to the presumed transient reduction in 5-HT activity caused by ATD.5Our findings provide further insights in the relationship of premature responding and reward processing and our understanding of pathological impulse control behaviours.References Eagle DM, Bari A, Robbins TW. The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 2008;199(3):439456. Worbe Y, Savulich G, Voon V, Fernandez-Egea E, Robbins TW. Serotonin depletion induces waiting impulsivityon the human four-choice serial reaction time task: cross-species translational significance. Neuropsychopharmacology 2014;39(6):15191526. Voon V. Models of impulsivity with a focus on waiting impulsivity: translational potential for neuropsychiatric disorders. Current Addiction Reports 2014;1(4):281288. Mechelmans DJ, Strelchuk D, Doamayor N, Banca P, Robbins TW, Baek K, et al. Reward sensitivity and waiting impulsivity: shift towards reward valuation away from action control. International Journal of Neuropsychopharmacology 2017;20(12):971978. Skandali N, Rowe JB, Voon V, Deakin JB, Cardinal RN, Cormack F, et al. Dissociable effects of acute SSRI (escitalopram) on executive, learning and emotional functions in healthy humans. Neuropsychopharmacology 2018;43(13):26452651.


2018 ◽  
Vol 125 (2) ◽  
pp. 289-312 ◽  
Author(s):  
Damien Brevers ◽  
Etienne Dubuisson ◽  
Fabien Dejonghe ◽  
Julien Dutrieux ◽  
Mathieu Petieau ◽  
...  

We examined proactive (early restraint in preparation for stopping) and reactive (late correction to stop ongoing action) motor response inhibition in two groups of participants: professional athletes ( n = 28) and nonathletes ( n = 25). We recruited the elite athletes from Belgian national taekwondo and fencing teams. We estimated proactive and reactive inhibition with a modified version of the stop-signal task (SST) in which participants inhibited categorizing left/right arrows. The probability of the stop signal was manipulated across blocks of trials by providing probability cues from the background computer screen color (green = 0%, yellow =17%, orange = 25%, red = 33%). Participants performed two sessions of the SST, where proactive inhibition was operationalized with increased go-signal reaction time as a function of increased stop-signal probability and reactive inhibition was indicated by stop-signal reaction time latency. Athletes exhibited higher reactive inhibition performance than nonathletes. In addition, athletes exhibited higher proactive inhibition than nonathletes in Session 1 (but not Session 2) of the SST. As top-level athletes exhibited heightened reactive inhibition and were faster to reach and maintain consistent proactive motor response inhibition, these results confirm an evaluative process that can discriminate elite athleticism through a fine-grained analysis of inhibitory control.


2007 ◽  
Vol 23 (3) ◽  
pp. 157-165 ◽  
Author(s):  
Carmen Hagemeister

Abstract. When concentration tests are completed repeatedly, reaction time and error rate decrease considerably, but the underlying ability does not improve. In order to overcome this validity problem this study aimed to test if the practice effect between tests and within tests can be useful in determining whether persons have already completed this test. The power law of practice postulates that practice effects are greater in unpracticed than in practiced persons. Two experiments were carried out in which the participants completed the same tests at the beginning and at the end of two test sessions set about 3 days apart. In both experiments, the logistic regression could indeed classify persons according to previous practice through the practice effect between the tests at the beginning and at the end of the session, and, less well but still significantly, through the practice effect within the first test of the session. Further analyses showed that the practice effects correlated more highly with the initial performance than was to be expected for mathematical reasons; typically persons with long reaction times have larger practice effects. Thus, small practice effects alone do not allow one to conclude that a person has worked on the test before.


2021 ◽  
pp. 1-9 ◽  
Author(s):  
Isabella Vainieri ◽  
Joanna Martin ◽  
Anna-Sophie Rommel ◽  
Philip Asherson ◽  
Tobias Banaschewski ◽  
...  

Abstract Background A recent genome-wide association study (GWAS) identified 12 independent loci significantly associated with attention-deficit/hyperactivity disorder (ADHD). Polygenic risk scores (PRS), derived from the GWAS, can be used to assess genetic overlap between ADHD and other traits. Using ADHD samples from several international sites, we derived PRS for ADHD from the recent GWAS to test whether genetic variants that contribute to ADHD also influence two cognitive functions that show strong association with ADHD: attention regulation and response inhibition, captured by reaction time variability (RTV) and commission errors (CE). Methods The discovery GWAS included 19 099 ADHD cases and 34 194 control participants. The combined target sample included 845 people with ADHD (age: 8–40 years). RTV and CE were available from reaction time and response inhibition tasks. ADHD PRS were calculated from the GWAS using a leave-one-study-out approach. Regression analyses were run to investigate whether ADHD PRS were associated with CE and RTV. Results across sites were combined via random effect meta-analyses. Results When combining the studies in meta-analyses, results were significant for RTV (R2 = 0.011, β = 0.088, p = 0.02) but not for CE (R2 = 0.011, β = 0.013, p = 0.732). No significant association was found between ADHD PRS and RTV or CE in any sample individually (p > 0.10). Conclusions We detected a significant association between PRS for ADHD and RTV (but not CE) in individuals with ADHD, suggesting that common genetic risk variants for ADHD influence attention regulation.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A117-A117
Author(s):  
Janna Mantua ◽  
Carolyn Mickelson ◽  
Jacob Naylor ◽  
Bradley Ritland ◽  
Alexxa Bessey ◽  
...  

Abstract Introduction Sleep loss that is inherent to military operations can lead to cognitive errors and potential mission failure. Single Nucleotide Polymorphisms (SNPs) allele variations of several genes (COMT, ADORA2A, TNFa, CLOCK, DAT1) have been linked with inter-individual cognitive resilience to sleep loss through various mechanisms. U.S. Army Soldiers with resilience-related alleles may be better-suited to perform cognitively-arduous duties under conditions of sleep loss than those without these alleles. However, military-wide genetic screening is costly, arduous, and infeasible. This study tested whether a brief survey of subjective resilience to sleep loss (1) can demarcate soldiers with and without resilience-related alleles, and, if so, (2) can predict cognitive performance under conditions of sleep loss. Methods Six SNPs from the aforementioned genes were sequenced from 75 male U.S. Army special operations Soldiers (age 25.7±4.1). Psychomotor vigilance, response inhibition, and decision-making were tested after a night of mission-driven total sleep deprivation. The Iowa Resilience to Sleeplessness Test (iREST) Cognitive Subscale, which measures subjective cognitive resilience to sleep loss, was administered after a week of recovery sleep. A receiver operating characteristic (ROC) curve was used to determine whether the iREST Cognitive Subscale can discriminate between gene carriers, and a cutoff score was determined. Cognitive performance after sleep deprivation was compared between those below/above the cutoff score using t-tests or Mann-Whitney U tests. Results The iREST discriminated between allele variations for COMT (ROC=.65,SE=.07,p=.03), with an optimal cutoff score of 3.03 out of 5, with 90% sensitivity and 51.4% specificity. Soldiers below the cutoff score had significantly poorer for psychomotor vigilance reaction time (t=-2.39,p=.02), response inhibition errors of commission (U=155.00,W=246.00,p=.04), and decision-making reaction time (t=2.13,p=.04) than Soldiers above the cutoff score. Conclusion The iREST Cognitive Subscale can discriminate between those with and without specific vulnerability/resilience-related genotypes. If these findings are replicated, the iREST Cognitive Subscale could be used to help military leaders make decisions about proper personnel placement when sleep loss is unavoidable. This would likely result in increased safety and improved performance during military missions. Support (if any) Support for this study came from the Military Operational Medicine Research Program of the United States Army Medical Research and Development Command.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koya Yamashiro ◽  
Yudai Yamazaki ◽  
Kanako Siiya ◽  
Koyuki Ikarashi ◽  
Yasuhiro Baba ◽  
...  

AbstractLong-term skills training is known to induce neuroplastic alterations, but it is still debated whether these changes are always modality-specific or can be supramodal components. To address this issue, we compared finger-targeted somatosensory-evoked and auditory-evoked potentials under both Go (response) and Nogo (response inhibition) conditions between 10 baseball players, who require fine hand/digit skills and response inhibition, to 12 matched track and field (T&F) athletes. Electroencephalograms were obtained at nine cortical electrode positions. Go potentials, Nogo potentials, and Go/Nogo reaction time (Go/Nogo RT) were measured during equiprobable somatosensory and auditory Go/Nogo paradigms. Nogo potentials were obtained by subtracting Go trial from Nogo trial responses. Somatosensory Go P100 latency and Go/Nogo RT were significantly shorter in the baseball group than the T&F group, while auditory Go N100 latency and Go/Nogo RT did not differ between groups. Additionally, somatosensory subtracted Nogo N2 latency was significantly shorter in the baseball group than the T&F group. Furthermore, there were significant positive correlations between somatosensory Go/Nogo RT and both Go P100 latency and subtracted Nogo N2 latency, but no significant correlations among auditory responses. We speculate that long-term skills training induce predominantly modality-specific neuroplastic changes that can improve both execution and response inhibition.


1993 ◽  
Vol 76 (3_suppl) ◽  
pp. 1139-1146 ◽  
Author(s):  
Toshiteru Hatayama ◽  
Kayoko Shimizu

The present study was done to estimate rise in skin temperature during a pain reaction time (pain RT) as a means of investigating why a pricking pain threshold, produced by thermal stimulation using time method, often increases during repeated measurements. The pain RT, or the time-delay between occurrence of pain sensation and a subsequent motor response, was measured by making EMG recording on a forearm. The radiant heat stimuli were three, 200, 300, and 350 mcal/sec./cm2, each of which was given through a round radiation window of an algesiometer head. Analysis showed that the pain RTs would be too short to explain higher pain thresholds often found using the time method.


2020 ◽  
Vol 79 ◽  
pp. e43-e44
Author(s):  
P. Basu ◽  
S. Choudhury ◽  
A. Roy ◽  
M.R. Baker ◽  
S.N. Baker ◽  
...  

Author(s):  
Cosmin Miha Moca ◽  
Dan Mihai Gherţoiu

ABSTRACT. Introduction. Reaction is a purposeful voluntary response to an external stimulus. There is certain time period between application of external stimulus and appropriate motor response to the stimulus called the reaction time. Objectives. The aim of this paper was to determine if different colour contrasts affects the reaction time of young tennis players. Materials and Methods. The participants in this study were young tennis players (N = 10), 3 females and 7 males, with the ages between 12 to 13 years old. Results. There was a significant difference in the scores for white background (M=7.5, SD=1.51) and orange background (M=6, SD=0.81) conditions; t(9)=3.30, p = 0.009. Conclusion. Our study managed to show that a different kind of background colour can affect the reaction accuracy in identifying an object of different shape and colour than the background.


Sign in / Sign up

Export Citation Format

Share Document