scholarly journals Advances in Gene Delivery Methods to Label and Modulate Activity of Upper Motor Neurons: Implications for Amyotrophic Lateral Sclerosis

2021 ◽  
Vol 11 (9) ◽  
pp. 1112
Author(s):  
Mouna Haidar ◽  
Aida Viden ◽  
Bradley J. Turner

The selective degeneration of both upper motor neurons (UMNs) and lower motor neurons (LMNs) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Unlike the simple organisation of LMNs in the brainstem and spinal cord, UMNs are embedded in the complex cytoarchitecture of the primary motor cortex, which complicates their identification. UMNs therefore remain a challenging neuronal population to study in ALS research, particularly in the early pre-symptomatic stages of animal models. A better understanding of the mechanisms that lead to selective UMN degeneration requires unequivocal visualization and cellular identification of vulnerable UMNs within the heterogeneous cortical neuronal population and circuitry. Here, we review recent novel gene delivery methods developed to cellularly identify vulnerable UMNs and modulate their activity in various mouse models. A critical overview of retrograde tracers, viral vectors encoding reporter genes and transgenic reporter mice used to visualize UMNs in mouse models of ALS is provided. Functional targeting of UMNs in vivo with the advent of optogenetic and chemogenetic technology is also discussed. These exciting gene delivery techniques will facilitate improved anatomical mapping, cell-specific gene expression profiling and targeted manipulation of UMN activity in mice. These advancements in the field pave the way for future work to uncover the precise role of UMNs in ALS and improve future therapeutic targeting of UMNs.

2021 ◽  
pp. 1-15
Author(s):  
Vasily Vorobyov ◽  
Alexander Deev ◽  
Frank Sengpiel ◽  
Vladimir Nebogatikov ◽  
Aleksey A. Ustyugov

Background: Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons resulting in muscle atrophy. In contrast to the lower motor neurons, the role of upper (cortical) neurons in ALS is yet unclear. Maturation of locomotor networks is supported by dopaminergic (DA) projections from substantia nigra to the spinal cord and striatum. Objective: To examine the contribution of DA mediation in the striatum-cortex networks in ALS progression. Methods: We studied electroencephalogram (EEG) from striatal putamen (Pt) and primary motor cortex (M1) in ΔFUS(1–359)-transgenic (Tg) mice, a model of ALS. EEG from M1 and Pt were recorded in freely moving young (2-month-old) and older (5-month-old) Tg and non-transgenic (nTg) mice. EEG spectra were analyzed for 30 min before and for 60 min after systemic injection of a DA mimetic, apomorphine (APO), and saline. Results: In young Tg versus nTg mice, baseline EEG spectra in M1 were comparable, whereas in Pt, beta activity in Tg mice was enhanced. In older Tg versus nTg mice, beta dominated in EEG from both M1 and Pt, whereas theta and delta 2 activities were reduced. In younger Tg versus nTg mice, APO increased theta and decreased beta 2 predominantly in M1. In older mice, APO effects in these frequency bands were inversed and accompanied by enhanced delta 2 and attenuated alpha in Tg versus nTg mice. Conclusion: We suggest that revealed EEG modifications in ΔFUS(1–359)-transgenic mice are associated with early alterations in the striatum-cortex interrelations and DA transmission followed by adaptive intracerebral transformations.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Angelina Cistaro ◽  
Vincenzo Cuccurullo ◽  
Natale Quartuccio ◽  
Marco Pagani ◽  
Maria Consuelo Valentini ◽  
...  

Amyotrophic lateral sclerosis has been defined as a “heterogeneous group of neurodegenerative syndromes characterized by progressive muscle paralysis caused by the degeneration of motor neurons allocated in primary motor cortex, brainstem, and spinal cord.” A comprehensive diagnostic workup for ALS usually includes several electrodiagnostic, clinical laboratory and genetic tests. Neuroimaging exams, such as computed tomography, magnetic resonance imaging and spinal cord myelogram, may also be required. Nuclear medicine, with PET and SPECT, may also play a role in the evaluation of patients with ALS, and provide additional information to the clinicians. This paper aims to offer to the reader a comprehensive review of the different radiotracers for the assessment of the metabolism of glucose (FDG), the measurement of cerebral blood flow (CBF), or the evaluation of neurotransmitters, astrocytes, and microglia by means of newer and not yet clinically diffuse radiopharmaceuticals.


2019 ◽  
Vol 20 (16) ◽  
pp. 3848 ◽  
Author(s):  
Baris Genc ◽  
Oge Gozutok ◽  
P. Hande Ozdinler

Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1546
Author(s):  
Hee Ra Park ◽  
Eun Jin Yang

Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) and Lou Gehrig’s disease, is characterized by a loss of the lower motor neurons in the spinal cord and the upper motor neurons in the cerebral cortex. Due to the complex and multifactorial nature of the various risk factors and mechanisms that are related to motor neuronal degeneration, the pathological mechanisms of ALS are not fully understood. Oxidative stress is one of the known causes of ALS pathogenesis. This has been observed in patients as well as in cellular and animal models, and is known to induce mitochondrial dysfunction and the loss of motor neurons. Numerous therapeutic agents have been developed to inhibit oxidative stress and neuroinflammation. In this review, we describe the role of oxidative stress in ALS pathogenesis, and discuss several anti-inflammatory and anti-oxidative agents as potential therapeutics for ALS. Although oxidative stress and antioxidant fields are meaningful approaches to delay disease progression and prolong the survival in ALS, it is necessary to investigate various animal models or humans with different subtypes of sporadic and familial ALS.


Author(s):  
Nimish Thakore ◽  
Erik P Pioro

Disorders of lower motor neurons (LMNs, or anterior horn cells) and upper motor neurons (UMNs), jointly termed motor neuron disorders (MNDs), are diverse and numerous. The prototypical MND, namely amyotrophic lateral sclerosis (ALS), a relentlessly progressive lethal disorder of adults, is the subject of another section and will not be discussed further here. Other MNDs include spinal muscular atrophy (SMA), of which there are four types: Kennedy’s disease, Brown-Violetto-Van Laere, and Fazio-Londe syndromes, lower motor neuron disorders as part of neurodegenerations and secondary motor neuron disease as part of malignancy, radiation and infection.


2021 ◽  
Author(s):  
Ana Clara Mota Gonçalo ◽  
Kaline dos Santos Kishishita Castro

Background: Greek, the word sklerosis means hardening. In medicine, the term sclerosis refers to the stiffening of body tissues - scars. These scars (sclerosis), when located in motor neurons, are signs of Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that affects neurons located in the primary motor cortex, brain stem, spinal cord and pyramidal tract. ALS has no cure and its treatment options are currently limited. Objectives: Review on the major complications of ALS, as well as the therapeutic methods for its treatment. Methods: Study conducted trough articles found on The New English Journal of Medicine, SpringerLink and Scholar Google and dated between 2009 and 2021. Results: ALS is known for the gradual atrophy of the muscle fibers associated with muscle loss, dysarthria and dysphagia complicated by sialorrhea, depending on the condition. All forms of the disease lead to paralysis, which causes the main consequent complication for the early mortality of patients - respiratory failure. The treatment of ALS has only one specific approved drug: riluzole, which decreases motor neuron damage, reducing disease progression and increasing patient survival. New therapeutic methods are being studied, such as treatment with stem cells and STING- induced inflammation, but they remain with limited evidence. Conclusions: ALS still has extremely restricted targeted treatment. There’s evident need for further studies aimed at a greater understanding of therapies with the potential to become effective in delaying the progression of the disease.


Sign in / Sign up

Export Citation Format

Share Document