scholarly journals The Temporal Effects of Acute Exercise on Episodic Memory Function: Systematic Review with Meta-Analysis

2019 ◽  
Vol 9 (4) ◽  
pp. 87 ◽  
Author(s):  
Paul Loprinzi ◽  
Jeremiah Blough ◽  
Lindsay Crawford ◽  
Seungho Ryu ◽  
Liye Zou ◽  
...  

Background: Accumulating research demonstrates that the timing of exercise plays an important role in influencing episodic memory. However, we have a limited understanding as to the factors that moderate this temporal effect. Thus, the purpose of this systematic review with meta-analysis was to evaluate the effects of study characteristics (e.g., exercise modality, intensity and duration of acute exercise) and participant attributes (e.g., age, sex) across each of the temporal periods of acute exercise on episodic memory (i.e., acute exercise occurring before memory encoding, and during memory encoding, early consolidation, and late consolidation). Methods: The following databases were used for our computerized searches: Embase/PubMed, Web of Science, Google Scholar, Sports Discus and PsychInfo. Studies were included if they: (1) Employed an experimental design with a comparison to a control group/visit, (2) included human participants, (3) evaluated exercise as the independent variable, (4) employed an acute bout of exercise (defined as a single bout of exercise), (5) evaluated episodic memory as the outcome variable (defined as the retrospective recall of information either in a spatial or temporal manner), and (6) provided sufficient data (e.g., mean, SD, and sample size) for a pooled effect size estimate. Results: In total, 25 articles met our inclusionary criteria and were meta-analyzed. Acute exercise occurring before memory encoding (d = 0.11, 95% CI: −0.01, 0.23, p = 0.08), during early memory consolidation (d = 0.47, 95% CI: 0.28, 0.67; p < 0.001) and during late memory consolidation (d = 1.05, 95% CI: 0.32, 1.78; p = 0.005) enhanced episodic memory function. Conversely, acute exercise occurring during memory encoding had a negative effect on episodic memory (d = −0.12, 95% CI: −0.22, −0.02; p = 0.02). Various study designs and participant characteristics moderated the temporal effects of acute exercise on episodic memory function. For example, vigorous-intensity acute exercise, and acute exercise among young adults, had greater effects when the acute bout of exercise occurred before memory encoding or during the early memory consolidation period. Conclusions: The timing of acute exercise plays an important role in the exercise-memory interaction. Various exercise- and participant-related characteristics moderate this temporal relationship.

2017 ◽  
Vol 32 (7) ◽  
pp. 1518-1525 ◽  
Author(s):  
Eveleen Sng ◽  
Emily Frith ◽  
Paul D. Loprinzi

Purpose: To evaluate the temporal effects of acute exercise on episodic memory. Design: A quasi-experimental study. Sample: Eighty-eight college students (N = 22 per group). Measures: Four experimental groups were evaluated, including a control group, exercising prior to memory encoding, exercising during encoding, and exercising during memory consolidation. The exercise stimulus consisted of a 15-minute moderate-intensity walk on a treadmill. Participants completed the Rey Auditory Verbal Learning Test (RAVLT) to assess learning and memory. Prospective memory was assessed via a Red Pen Task. Long-term memory (recognition and attribution) of the RAVLT was assessed 20 minutes and 24 hours after exercise. Analysis: Repeated-measures analysis of variance (ANOVA) assessed the performance of RAVLT scores of trials 1 to 5 across groups. One-way ANOVA assessed the performance of individual trials across groups, whereas χ2 assessed the performance of the Red Pen Task across groups. Results: Regarding learning, the interaction of groups × trial was marginally statistically significant ( F12,332 = 1.773, P = .05), indicating that the group which exercised before encoding did better than the group that exercised during encoding and consolidation. For both 24-hour recognition and attribution performance, the group that exercised before memory encoding performed significantly better than the group that exercised during consolidation ( P = .05 recognition, P = .006 attribution). Discussion: Engaging in a 15-minute bout of moderate-intensity walking before a learning task was effective in influencing long-term episodic memory.


2018 ◽  
Vol 122 (5) ◽  
pp. 1744-1754 ◽  
Author(s):  
James T. Haynes ◽  
Emily Frith ◽  
Eveleen Sng ◽  
Paul D. Loprinzi

Our previous work employing a between-subject randomized controlled trial design suggests that exercising prior to memory encoding is more advantageous in enhancing retrospective episodic memory function when compared to exercise occurring during or after memory encoding. The present experiment evaluates this potential temporal effect of acute exercise on memory function while employing a within-subject, counterbalanced design. In a counterbalanced order (via Latin squares), 24 participants completed four visits including (1) exercising (moderate-intensity walking) prior to memory encoding, (2) exercising during memory encoding, (3) exercising after memory encoding, and (4) a control visit (no exercise). Retrospective memory function (short term and long term; 24-hour follow-up) was assessed from a multitrial word list. Prospective memory was assessed from a time-based task. Compared to all other visits, short-term memory was greater in the visit that involved exercising prior to memory encoding (F = 3.76; P = .01; η2 = .79). Similar results occurred for long-term memory, with no significant effects for prospective memory performance. We provide robust evidence demonstrating that acute moderate-intensity exercise prior to memory encoding is optimal in enhancing short-term and long-term memory function when compared to no exercise as well as exercising during and after memory encoding.


Medicina ◽  
2019 ◽  
Vol 55 (8) ◽  
pp. 422
Author(s):  
Loprinzi ◽  
McRaney ◽  
Luca ◽  
McDonald

Background and objectives: Episodic specific induction (ESI) is a manipulation shown to enhance episodic memory function. Episodic specificity induction involves thoroughly unpacking a recently encoded memory, with this enhanced retrieval-induced process helping to facilitate subsequent cognitions. In addition to ESI, emerging work suggests that acute exercise may also help to facilitate episodic memory function. The purpose of this study was to evaluate the potential individual and combined effects of acute exercise and ESI on subsequent episodic memory performance. Materials and Methods: Participants (n = 120) were randomly assigned into one of four groups, (1) ESI and exercise (ESI + E), (2) ESI only (ESI), (3) exercise only (E), and (4) no ESI and no exercise (Control; C). The ESI protocol involved watching a short video and then recalling details about the setting, people, and actions in the video. The exercise protocol involved an acute bout (15 min) of treadmill exercise. After these tasks, episodic memory function was evaluated with an autobiographical interview assessment and a computerized episodic memory task involving what–where–when integration. Results: We did not observe significant main effects for exercise or ESI on memory function but did observe some suggestive evidence of an interaction effect of these two parameters on episodic memory. That is, for the exercise group, memory performance was higher when combined with ESI as opposed to without ESI. Conclusions: Acute exercise and ESI may interact to influence episodic memory function.


2019 ◽  
Vol 43 (6) ◽  
pp. 1016-1029
Author(s):  
Paul D. Loprinzi ◽  
Lauren Koehler ◽  
Emily Frith ◽  
Pamela Ponce ◽  
Dylan Delancey ◽  
...  

Objective: In this study, we evaluated whether exercise prior to memory encoding or during memory consolidation can influence episodic memory function after being exposed to a stressful environment. Methods: We conducted 3 between-group randomized controlled experiments among young adults. We assessed episodic memory (via logic memory task) at the beginning of the experiment and approximately 45 minutes later. Across the 3 experiments, we varied the temporal period (eg, before memory encoding or during consolidation) of the acute bout of exercise (15-minute moderate-intensity exercise) and psychological stress induction. Results: Across all 3 experiments there was a statistically significant main effect for time for memory function, but there were no time x group interaction effects. Conclusion: Memory declined across the 2 assessment periods, but for all 3 experiments, exercise was not associated with memory function after being exposed to a stressful stimulus.


2018 ◽  
Vol 52 (21) ◽  
pp. 1357-1366 ◽  
Author(s):  
Margie H Davenport ◽  
Frances Sobierajski ◽  
Michelle F Mottola ◽  
Rachel J Skow ◽  
Victoria L Meah ◽  
...  

ObjectiveTo perform a systematic review and meta-analysis to explore the relationship between prenatal exercise and glycaemic control.DesignSystematic review with random-effects meta-analysis and meta-regression.Data sourcesOnline databases were searched up to 6 January 2017.Study eligibility criteriaStudies of all designs were included (except case studies and reviews) if they were published in English, Spanish or French, and contained information on the population (pregnant women without contraindication to exercise), intervention (subjective or objective measures of frequency, intensity, duration, volume or type of acute or chronic exercise, alone (‘exercise-only’) or in combination with other intervention components (eg, dietary; ‘exercise+cointervention’) at any stage of pregnancy), comparator (no exercise or different frequency, intensity, duration, volume and type of exercise) and outcome (glycaemic control).ResultsA total of 58 studies (n=8699) were included. There was ‘very low’ quality evidence showing that an acute bout of exercise was associated with a decrease in maternal blood glucose from before to during exercise (6 studies, n=123; mean difference (MD) −0.94 mmol/L, 95% CI −1.18 to −0.70, I2=41%) and following exercise (n=333; MD −0.57 mmol/L, 95% CI −0.72 to −0.41, I2=72%). Subgroup analysis showed that there were larger decreases in blood glucose following acute exercise in women with diabetes (n=26; MD −1.42, 95% CI −1.69 to −1.16, I2=8%) compared with those without diabetes (n=285; MD −0.46, 95% CI −0.60 to −0.32, I2=62%). Finally, chronic exercise-only interventions reduced fasting blood glucose compared with no exercise postintervention in women with diabetes (2 studies, n=70; MD −2.76, 95% CI −3.18 to −2.34, I2=52%; ‘low’ quality of evidence), but not in those without diabetes (9 studies, n=2174; MD −0.05, 95% CI −0.16 to 0.05, I2=79%).ConclusionAcute and chronic prenatal exercise reduced maternal circulating blood glucose concentrations, with a larger effect in women with diabetes.


2019 ◽  
Vol 9 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Lauren Johnson ◽  
Paul D. Loprinzi

Background: The objective of this study was to evaluate potential sex-specific differences on episodic memory function and determine whether sex moderates the effects of acute exercise on episodic memory.Methods: A randomized controlled intervention was employed. This experiment was conducted among young University students (mean age = 21 years). Both males (n=20) and females (n=20)completed two counterbalanced laboratory visits, with one visit involving a 15-minute bout of moderate-intensity exercise prior to the memory task. The control visit engaged in a time matched seated task. Memory function (including short-term memory, learning, and long-term memory) was assessed from the RAVLT (Rey Auditory Verbal Learning Test).Results: We observed a significant main effect for time (P<0.001, ƞ2p= 0.77) and a marginally significant main effect for sex (P=0.06, ƞ2p= 0.09), but no time by sex by condition interaction(P=0.91, ƞ2p= 0.01). We also observed some suggestive evidence of a more beneficial effect of acute exercise on memory for females. Conclusion: In conclusion, females outperformed males in verbal memory function. Additional research is needed to further evaluate whether sex moderates the effects of acute exercise on memory function.


2018 ◽  
Vol 105 (4) ◽  
pp. 285-297 ◽  
Author(s):  
PD Loprinzi ◽  
P Ponce ◽  
E Frith

Emerging research demonstrates that exercise is favorably associated with several cognitive outcomes, including episodic memory function. The majority of the mechanistic work describing the underlying mechanisms of this effect has focused on chronic exercise engagement. Such mechanisms include, e.g., chronic exercise-induced neurogenesis, gliogenesis, angiogenesis, cerebral circulation, and growth factor production. Less research has examined the mechanisms through which acute (vs. chronic) exercise subserves episodic memory function. The purpose of this review is to discuss these potential underlying mechanisms, which include, e.g., acute exercise-induced (via several pathways, such as vagus nerve and muscle spindle stimulation) alterations in neurotransmitters, synaptic tagging/capturing, associativity, and psychological attention.


Sign in / Sign up

Export Citation Format

Share Document