scholarly journals Pareto-Based Bi-Objective Optimization Method of Sensor Placement in Structural Health Monitoring

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 549
Author(s):  
Shaoxiao Nong ◽  
Donghui Yang ◽  
Tinghua Yi

For a practical structural health monitoring (SHM) system, the traditional single objective methods for optimal sensor placement (OSP) cannot always obtain the optimal result of sensor deployment without sacrificing other targets, which creates obstacles to the efficient use of the sensors. This study mainly focuses on establishing a bi-objective optimization method to select the sensor placement positions. The practical significance of several single-objective criteria for OSP is firstly discussed, based on which a novel bi-objective optimization method is proposed based on the Pareto optimization process, and the corresponding objective functions are established. Furthermore, the non-dominated sorting genetic algorithm is introduced to obtain a series of the Pareto optimal solutions, from which the final solution can be determined based on a new defined membership degree index. Finally, a numerical example of a plane truss is applied to illustrate the proposed method. The Pareto optimization-based bi-objective OSP framework presented in this study could be well suited for solving the problem of multi-objective OSP, which can effectively improve the efficiency of the limited sensors in SHM system.

2020 ◽  
Vol 10 (21) ◽  
pp. 7710
Author(s):  
Tsung-Yueh Lin ◽  
Jin Tao ◽  
Hsin-Haou Huang

The objective of optimal sensor placement in a dynamic system is to obtain a sensor layout that provides as much information as possible for structural health monitoring (SHM). Whereas most studies use only one modal assurance criterion for SHM, this work considers two additional metrics, signal redundancy and noise ratio, combining into three optimization objectives: Linear independence of mode shapes, dynamic information redundancy, and vibration response signal strength. A modified multiobjective evolutionary algorithm was combined with particle swarm optimization to explore the optimal solution sets. In the final determination, a multiobjective decision-making (MODM) strategy based on distance measurement was used to optimize the aforementioned objectives. We applied it to a reduced finite-element beam model of a reference building and compared it with other selection methods. The results indicated that MODM suitably balanced the objective functions and outperformed the compared methods. We further constructed a three-story frame structure for experimentally validating the effectiveness of the proposed algorithm. The results indicated that complete structural modal information can be effectively obtained by applying the MODM approach to identify sensor locations.


2013 ◽  
Vol 540 ◽  
pp. 47-54 ◽  
Author(s):  
Chun Li Wu ◽  
Han Bing Liu ◽  
Yan Li

A novel stabilization diagram method was presented for sensor placement in structural health monitoring of bridges. The aim of the method is to select the optimal locations which can achieve the best identification of modal frequencies and mode shapes. A single parents genetic algorithm was adopted to optimize the sensor locations from a set of coordinate positions. Five fitness functions taken as the objective function are proposed based on effective independence, modal assurance and modal energy criterion, in which the combined fitness functions can obtain more comprehensive properties to reduce the noise interference. The proposed method puts forward a universal way for sensor placement of the civil engineering structure. The effectiveness of the method was proved by a simply supported beam and a continuous beam bridge in the An Longquan interchange overpass.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Xuefeng Zhao ◽  
Kwang Ri ◽  
Ruicong Han ◽  
Yan Yu ◽  
Mingchu Li ◽  
...  

In the recent years, with the development and popularization of smartphone, the utilization of smartphone in the Structural Health Monitoring (SHM) has attracted increasing attention owing to its unique feature. Since bridges are of great importance to society and economy, bridge health monitoring has very practical significance during its service life. Furthermore, rapid damage assessment of bridge after an extreme event such as earthquake is very important in the recovery work. Smartphone-based bridge health monitoring and postevent damage evaluation have advantages over the conventional monitoring techniques, such as low cost, ease of installation, and convenience. Therefore, this study investigates the implementation feasibility of the quick bridge health monitoring technique using smartphone. A novel vision-based cable force measurement method using smartphone camera is proposed, and, then, its feasibility and practicality is initially validated through cable model test. An experiment regarding multiple parameters monitoring of one bridge scale model is carried out. Parameters, such as acceleration, displacement, and angle, are monitored using smartphone. The experiment results show that there is a good agreement between the reference sensor and smartphone measurements in both time and frequency domains.


Teras Jurnal ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 423
Author(s):  
Juandra Hartono ◽  
Umi Khoiroh

<p align="center"><strong>Abstrak</strong></p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Salah satu isu utama dalam setiap penerapan <em>Structure Health Monitoring System</em> (SHMS) jembatan bentang panjang khususnya jembatan Pulau Balang II adalah bagaimana membuat SHMS tersebut dapat diandalkan secara efektif. Penggunaan sensor yang terlalu banyak tidaklah efisien demi mendapatkan informasi yang selengkap-lengkapnya terkait kondisi jembatan. Tujuan utama riset ini adalah untuk menganalisia tipe sensor, posisi penempatan sensor dan jumlah sensor yang akan dipasang pada SHMS jembatan Pulau Balang sesuai kebutuhan sensor yang efektif dan efisien. Pengamatan SHMS meliputi lendutan dek, pylon serta tegangan dek, pylon. Metode penelitian berupa pengamatan langsung di lapangan, analisa data dan diskusi dengan stakeholder jembatan. Dari hasil analisis terdapat 13 jenis sensor yang sebaiknya dipasang pada SHMS Jembatan Pulau Balang dengan total kebutuhan sensor berjumlah 87 buah. Posisi penempatan sensor sebagian besar ada di pylon, kabel dan dek yang disesuaikan dengan tipe jembatan yaitu cable stayed. Untuk sensor gempa disarankan perlu dipasang hal ini dikarenakan wilayah tersebut memiliki seismistis paling rendah yang didominasi oleh tiga zona sesar utama yaitu sesar mangkalihat, sesar tarakan dan sesar maratus oleh karena itu Kalimantan bukanlah daerah yang bebas gempa bumi.</p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Kata kunci: <em>structural health monitoring system</em><em> (SHMS),</em><em> sensor, p</em><em>ylon, dek, cable stayed</em></p><p class="11daftarpustaka"> </p><p align="center"><strong> </strong></p><p align="center"><strong>Abstract</strong></p><p class="11daftarpustaka"> </p><p>One of the main issues in each application of Structure Health Monitoring System (SHMS) in long span bridge particularly Pulau Balang II Bridge is how to make the SHMS effectively dependable. The excessive use of sensors is inefficient in order to obtain complete information regarding the condition of the bridge. The main purpose of this research is to analyze the type of sensor, the position of the sensor placement and the number of sensors that will be installed on the SHMS structure of the Balang Island bridge according to the need for effective and efficient sensors. SHMS observations include deck deflection, pylon and deck stress, pylon. The research method is in the form of direct observation in the field, data analysis and discussions with bridge stakeholders. From the results of the analysis, there are 13 types of sensors that should be installed on the Balang Island Bridge SHMS with a total sensor requirement of 87 units. Most of the sensor placement positions are in the pylons, cables and decks that are adapted to the type of bridge, namely cable stayed. For earthquake sensors, it is recommended to install this because the area has the lowest seismicity which is dominated by three main fault zones, namely the Mangkalihat Fault, Tarakan Fault and Maratus Fault. Therefore, Kalimantan is not an earthquake-free area</p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Keywords: <em>structural health monitoring system</em><em> (SHMS),</em><em> sensor, pylon, deck, cable stayed</em></p>


Sign in / Sign up

Export Citation Format

Share Document