scholarly journals Background to the Monolithicity Factors for the Assessment of Jacketed Reinforced Concrete Columns

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
Georgia E. Thermou ◽  
Andreas J. Kappos

The paper presents the background to the expressions adopted in the new Eurocode 8—3 for jacketed reinforced concrete columns. These are based on the commonly adopted concept of monolithicity factors (ratios of resistance of the jacketed section to that of an identical monolithic one). These factors are derived here in two ways: (i) by fitting experimental results for jacketed columns and (ii) by an extended parametric study of substandard reinforced concrete (R/C) members that were retrofitted by adding R/C jackets, analysed using a model developed by the authors that takes into account slip at the interface. Apart from the cross-section geometry and the thickness of the jacket, parameters of the investigation were the material properties of the core cross-section and the jacket, as well as the percentage of longitudinal reinforcement of the jacket and the percentage of dowels placed to connect the existing member to the jacket. It was found that the parameter that had the most visible effect on these factors was the normalised axial load (ν). The finally adopted factors are either simple functions of ν or constant values.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Chichaya Boonmee ◽  
Kittipoom Rodsin ◽  
Krissachai Sriboonma

This paper aims at investigating gravity load collapse behavior of extremely poor quality reinforced concrete columns under cyclic loading. Such columns were usually constructed by local people and may not be designed to meet any of the standards. It was found that their concrete strength may be as low as 5 MPa and the amount of longitudinal reinforcement may be lower than 1%. This type of column is deliberately defined as “nonengineered reinforced concrete column,” or NRCC. During earthquake, the gravity load collapse of the NRCC columns caused a large number of death tolls around the world. In this study, four columns as representative of existing NRCC were tested under cyclic loading. The compressive strength of concrete in order of 5 MPa was used to be representative of columns with poor quality concrete. Two axial load levels of 6 and 18 tons were used to study the influence of axial load level on maximum drift at gravity load collapse. To investigate the effect of bar types on drift capacity, 9 mm round bars were used in two specimens and 12 mm deformed bars were used for the rest of the specimens. The maximum drift before gravity load collapse was very dependent on the axial load level. The maximum drift of the specimens subjected to high axial load (18 tons) was extremely low at approximately 1.75% drifts. The use of deformed bars (associated with larger amount of longitudinal reinforcement) caused the damage to severely dissipate all over the height of the columns. Such damage caused columns to collapse at a lower drift compared to those using round bars. Finally, the plastic hinge model was used to predict the maximum drift of the low strength columns. It was found that the model overly underestimates the drift at gravity load collapse.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1594
Author(s):  
Umut Hasgul

In this study, the response quantities affecting the equivalent yield curvature, which is important in the deformation-based seismic design and assessment of structural systems, are investigated for reinforced concrete columns with a square cross-section. In this context, the equivalent yield curvatures were determined by conducting moment–curvature analyses on various column models, in which the axial load level, cross-section dimension, longitudinal reinforcement ratio, and concrete compression strength were changed parametrically, and the independent and/or combined effects of the relevant parameters were discussed. Depending on the axial load levels of P/Agfc′ < 0.3, P/Agfc′ = 0.3, and P/Agfc′ > 0.3 for the considered columns, the yielding of reinforcement, yielding of reinforcement and/or concrete crushing, and concrete crushing governed the yield conditions, respectively. It can be noted that the cross-section dimension and axial load level became the primary parameters. Even though the independent effects with regard to particular parameters remained at minimal levels, the combined effects of them with the axial load became important in terms of the equivalent yield curvature.


Author(s):  
Sinan Cansız

Reinforced concrete columns are the most important structural elements that determine the ductility of the structures. The main parameters affecting the behavior of reinforced concrete columns are axial load level, shear span, percent of longitudinal reinforcement and percent of transverse reinforcement. The aim of this study is to examine residual damage behavior of RC columns under cyclic loading similar to the earthquake loads combined depend on variable axial load level, spanning to depth ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. When the results of experiments are examined, it can be seen that the residual drift ratio of reinforced concrete columns can be used to characterize the damage occurred in the structure after earthquake or loading. In addition, the performance level of the reinforced concrete columns according to the residual drift ratio is defined in FEMA356. As a result of this study, the analytical equation that calculates the residual drift ratio of the reinforced concrete columns at the ultimate displacement limit is proposed.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2010 ◽  
Vol 3 (3) ◽  
pp. 271-283 ◽  
Author(s):  
M. Y. M. Omar ◽  
R. B. Gomes ◽  
A. P. A. Reis

This paper presents the results of reinforced concrete columns strengthened by addition of a self-compacting concrete overlay at the compressed and at the tensioned face of the member, with and without addition of longitudinal steel bars. Eight columns were submit- ted to loading with an initial eccentricity of 60 mm . These columns had 120 mm x 250 mm of rectangular cross section, 2000 mm in length and four longitudinal reinforcement steel bars with 10 mm in diameter. Reference columns P1 and P2 were tested to failure without any type of rehabilitation. Columns P3 to P8 were loaded to a predefined load (close to the initial yield point of tension reinforce- ment), then unloaded and strengthened for a subsequent test until failure. Results showed that the method of rehabilitation used was effective, increasing the loading capacity of the strengthened pieces by 2 to 5 times the ultimate load of the reference column.


Author(s):  
Hesham A. Haggag ◽  
Nagy F. Hanna ◽  
Ghada G. Ahmed

The axial strength of reinforced concrete columns is enhanced by wrapping them with Fiber Reinforced Polymers, FRP, fabrics.  The efficiency of such enhancement is investigated for columns when they are subjected to repeated lateral loads accompanied with their axial loading.  The current research presents that investigation for Glass and Carbon Fiber Reinforced Polymers (GFRP and CFRP) strengthening as well.  The reduction of axial loading capacity due to repeated loads is evaluated. The number of applied FRP plies with different types (GFRP or CFRP) are considered as parameters in our study. The study is evaluated experimentally and numerically.  The numerical investigation is done using ANSYS software. The experimental testing are done on five half scale reinforced concrete columns.  The loads are applied into three stages. Axial load are applied on specimen in stage 1 with a value of 30% of the ultimate column capacity. In stage 2, the lateral loads are applied in repeated manner in the existence of the vertical loads.  In the last stage the axial load is continued till the failure of the columns. The final axial capacities after applying the lateral action, mode of failure, crack patterns and lateral displacements are recorded.   Analytical comparisons for the analyzed specimens with the experimental findings are done.  It is found that the repeated lateral loads decrease the axial capacity of the columns with a ratio of about (38%-50%).  The carbon fiber achieved less reduction in the column axial capacity than the glass fiber.  The column confinement increases the ductility of the columns under the lateral loads.


Author(s):  
Ehab El-Salakawy ◽  
Fangxin Ye ◽  
Yasser Mostafa Selmy

Composite materials like glass fiber-reinforced polymer (GFRP) is becoming widely acceptable to be used as a reinforcing material due to its high ultimate tensile strength-to-weight ratio and excellent resistance to corrosion. However, the seismic behavior of GFRP-reinforced concrete columns has not been fully investigated yet. This paper presents the results of a numerical analysis of full-size GFRP-RC rectangular columns under cyclic loading. The simulated column depicts the lower part of a building column between the foundation and the point of contra-flexure at the mid-height of the column. GFRP reinforcement properties and concrete modeling based on fracture energy have been incorporated in the numerical model. Experimental validation has been used to examine the accuracy of the constructed finite element models (FEMs) using a commercially available software. The validated FEM was used to perform a parametric study, considering several concrete strength values and axial load levels, to study its influence on the performance of the GFRP-reinforced concrete columns under cyclic loading. It was concluded that the hysteretic dissipation capacity deteriorates under high axial load level due to severe softening of the concrete. The FE results showed a substantial improvement of the lateral load-carrying capacities by increasing concrete compressive strength.


Sign in / Sign up

Export Citation Format

Share Document