scholarly journals Discrete Element Modeling of the Seismic Behavior of Masonry Construction

Buildings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 43 ◽  
Author(s):  
José Lemos

Discrete element models are a powerful tool for the analysis of masonry, given their ability to represent the discontinuous nature of these structures, and to simulate the most common deformation and failure modes. In particular, discrete elements allow the assessment of the seismic behavior of masonry construction, using either pushover analysis or time domain dynamic analysis. The fundamental concepts of discrete elements are concisely presented, stressing the issues related to masonry modeling. Methods for generation of block models are discussed, with some examples for the case of irregular stone masonry walls. A discrete element analysis of a shaking table test performed on a traditional stone masonry house is discussed, as a demonstration of the capabilities of these models. Practical application issues are examined, namely the computational requirements for dynamic analysis.

2013 ◽  
Vol 368-370 ◽  
pp. 1547-1550
Author(s):  
Wei Wu ◽  
Jing Ji

Combined with practical experience a kind of new horizontal storage tank with separate plate was put forward. In view of the lack of experience in the design of the new tank and limitations of carrying out shaking table test for full scale horizontal storage tank, the pseudo-dynamic analysis of separate plate substructure with 5m diameter is done by using ANSYS finite element software combined with the actual engineering. The fluid loads action and mechanical model were simplified, and elastic-plastic mechanical properties of separate plate substructure under the cyclic loading actions were investigated, then deformation and stress distribution of separate plate were obtained. The design thickness for separate plate which in the horizontal storage tank is verified by finite element analysis and the horizontal tank construction methods is given. These can provide technical support to improve the practical design of large horizontal storage tank.


2011 ◽  
Vol 261-263 ◽  
pp. 1619-1624
Author(s):  
Pei Zhen Li ◽  
Jing Meng ◽  
Peng Zhao ◽  
Xi Lin Lu

Shaking table test on soil-structure interaction system in harder site condition is presented briefly in this paper. Three-dimensional finite element analysis on shaking table test is carried out using ANSYS program. The surface-to-surface contact element is taken into consideration for the nonlinearity of the state of the interface of the soil-pile and an equivalent linear model is used for soil behavior. By comparing the results of the finite element analysis with the data from shaking table tests, the computational model is validated. Based on the calculation results, the paper gives the seismic responses under the consideration of soil-structure interaction in harder site condition, including acceleration response, contact analysis on soil pile interface and so on.


2013 ◽  
Vol 8 (3) ◽  
pp. 349-375 ◽  
Author(s):  
Guido Magenes ◽  
Andrea Penna ◽  
Ilaria Enrica Senaldi ◽  
Maria Rota ◽  
Alessandro Galasco

2014 ◽  
Vol 11 (4) ◽  
pp. 357-364
Author(s):  
Hui Su ◽  
Jian Wang ◽  
Xinpei Jiang ◽  
Yang Tan

Based on the shake table test on "tie column-ring beam-cast-in-place slab" construction waste recycled brick masonry structure, a 1/3 scaled model of 4 stories is tested to analyze the seismic behavior of the multi-storey masonry structure. The test is conducted with EL-Centro seismic wave, Taft wave and artificial wave to simulate the damages observed and the seismic response under different earthquake levels. On the basis of test results, the seismic performance of the model is good and the overall structure could satisfy seismic fortification requirements in the region of intensity 8. At the same time, there was no obvious difference between this masonry structure and recycled aggregate concrete block masonry structure. The lintel of the door and window damage seriously. The base damages more easily than the superstructure. Masonry structure with construction waste recycled brick can satisfy the requirement of the masonry structure buildings in eight degree of aseismatic design area.


2012 ◽  
Vol 166-169 ◽  
pp. 730-733 ◽  
Author(s):  
Fei Zhu ◽  
Feng Lai Wang ◽  
Xu Jie Sun ◽  
Y. Zhao

Unreinforced stone masonry pagodas have great cultural value and should be detailed investigation its mechanical properties. These buildings were not designed to resist earthquakes in ancient China, at least not in the way of current methods. The objectives of this research were to understand the dynamic behavior of unreinforced stone masonry pagoda and its seismic performance. To accomplish these, a 1/12 scale model of China Dinosaurs Pagoda was constructed and tested on shaking table. The octangle model height is 3.96m, with aspect ratio of height to width is 2.93, both parameters exceed the stipulated limit of Code for Seismic Design of Building. The model built with the stones and motars similar to the prototype materials and the arrangements. Its dynamic behavior and seismic performance were tested on the shaking table towards the free vibration and three earthquake waves. The experimental program adopted in the research is explained in this paper.


2013 ◽  
Vol 479-480 ◽  
pp. 1045-1050
Author(s):  
Wei Ting Lin ◽  
Yuan Chieh Wu ◽  
Chin Cheng Huang

This study is aim to evaluate the seismic response of the motor control center cabinet in a nuclear power plant using shaking table test and 3D finite element analysis method. Three typical types of motor control center cabinet were used in this study and frequency curves and spectral response acceleration were used as the indices of the dynamic response. The results indicated that the resonance frequency for X and Y direction is about 12 Hz and 15 Hz, respectively, which is verified by the numerical results. The frequencies curves and spectral response acceleration generated by numerical and experimental method were similar and well fitting. Although the numerical method obtained the conservative results, the model accurately represents the dynamic characteristics of the actual motor control center cabinet for seismic verification.


2010 ◽  
Vol 163-167 ◽  
pp. 981-986
Author(s):  
Li He ◽  
Xian Guo Ye

This paper presents the nonlinear dynamic simulation analysis of a shaking table test specimen, which was a twelve- story reinforced concrete frame and tested under base excitations representing four earthquake records of increasing intensity. Owing to the length constraint of the paper, three cases are used for the simulation. The numerical simulation of the test model is conducted utilizing the finite element analysis procedure CANNY, and the analysis results include the natural frequency, response history of the frame and the damage evolution. It is concluded from comparisons between experimental results and the numerical simulation ones that the latter matches well with the former, therefore the validity of the analytical method and model for simulation of RC frame shaking table test is proved.


2012 ◽  
Vol 243 ◽  
pp. 341-355 ◽  
Author(s):  
Min Kyu Kim ◽  
In-Kil Choi ◽  
Jeong-Moon Seo

Sign in / Sign up

Export Citation Format

Share Document