scholarly journals A Ducted Photovoltaic Façade Unit with Buoyancy Cooling: Part I Experiment

Buildings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 88 ◽  
Author(s):  
Abdel Rahman Elbakheit

A ducted photovoltaic façade (DPV) unit was studied using experimental prototype and simulated in a full scale computational fluid dynamics (CFD) model. The study comes in two parts; this is Part I, as detailed in the title above, and Part II is titled “A Ducted Photovoltaic Façade Unit with Buoyancy Cooling: Part II CFD Simulation”. The process adopted in the experimental study is replicated in the simulation part. The aim was to optimize the duct width behind the solar cells to allow for a maximum buoyancy-driven cooling for the cells during operation. Duct widths from 5 to 50 cm were tested in a prototype. A duct width of 45 cm had the maximum calculated heat removed from the duct; however, the lowest cell-operating temperature was reported for duct width of 50 cm. It was found that ΔT between ducts’ inlets and outlets range from 5.47 °C to 12.32 °C for duct widths of 5–50 cm, respectively. The ducted system enhanced module efficiency by 12.69% by reducing photovoltaic (PV) temperature by 27 °C from 100 °C to 73 °C. The maximum measured heat recovered from the ducted PV system was 422 W. This is 48.98% from the incident radiation in the test. The total sum of heat recovered and power enhanced by the ducted system was 61.67%.

Author(s):  
Abdel Rahman Elbakheit

A ducted photovoltaic façade (DPV) unit Studied using experimental Prototype and simulated in a full scale Computational Fluid Dynamics CFD Model. The Study comes in two parts; This is Part I with the title detailed above and Part II titled ‘A Ducted Photovoltaic Façade Unit with Buoyancy Cooling: Part II CFD Simulation’.. The process adopted in the experimental study is replicated in the simulation Part.  The aim was to optimize the duct width behind the solar cells to allow for maximum buoyancy-driven cooling for the cells during operation. Duct widths from 5 to 50 cm were tested in a Proto-type. A duct width of 45 cm had the maximum calculated heat removed from the duct; however, the lowest cell-operating temperature was reported for duct width of 50 cm. It was found that the DT between ducts' inlets and outlets range from 5.47 °C to 12.32 °C for duct widths of 5–50 cm, respectively. The ducted system enhanced module efficiency by 12.69% by reducing PV temperature by 27 °C from 100°C to 73 °C. The maximum calculated heat recovered from the ducted PV system is 422 W. This is 47.98% from the incident radiation in the test. Total summation of heat recovered and power enhanced by the ducted system is 61.67%.


Buildings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 133 ◽  
Author(s):  
Abdel Rahman Elbakheit

A ducted photovoltaic façade (DPV) unit was simulated using computational fluid dynamics (CFD). This is Part II of the study, which is a repetition of Part I—a previous experimental study of the ducted photovoltaic unit with buoyancy cooling. The aim of this study is to optimize the duct width behind the solar cells to allow for the cells to achieve maximum buoyancy-driven cooling during operation. Duct widths from 5 to 50 cm were simulated. A duct width of 40 cm allowed for the maximum calculated heat to be removed from the duct; however, the lowest cell-operating temperature was reported for a duct width of 50 cm. The results showed that the change in temperature (ΔT) between the ducts’ inlets and outlets ranged from 8.10 to 19.32 °C. The ducted system enhanced module efficiency by 12.69% by reducing the photovoltaic façade (PV) temperature by 27 °C from 100 to 73 °C, as opposed to the increased temperatures that have been reported when fixing the PV directly onto the building fabric. The maximum simulated heat recovered from the ducted PV system was 529 W. This was 47.98% of the incident radiation in the test. The total summation of heat recovered and the power enhanced by the ducted system was 61.67%. The nature of airflow inside the duct was explored and visualized by reference to the Grashof number (Gr) and CFD simulations, respectively.


Author(s):  
M. Alfaro Cano ◽  
A. Hernandez-Guerrero ◽  
C. Rubio Arana ◽  
Aristotel Popescu

One of the requirements for existing personal computers, PCs, is that the hardware inside must maintain an operating temperature as low as possible. One way to achieve that is to place the hardware components at locations with enough airflow around it. However, the relationship between the airflow and temperature of the components is unknown before they are placed at specific locations inside a PC. In this work a Computational Fluid Dynamics (CFD) analysis is coupled to a Design of Experiment (DOE) methodology to answer typical minitower key questions: a) how do the possible positions of hardware components affect their temperature?, and b) is it possible to get an optimal placement for these hardware components using the data collected by the CFD simulation results? The DOE methodology is used to optimize the analysis for a very large number of possible configurations. The results help in identifying where the efforts need to be placed in order to optimize the positioning of the hardware components for similar configurations at the designing stage. Somehow the results show that general conclusions could be drawn, but that there are not specific rules that could be applied to every configuration.


2016 ◽  
Vol 366 ◽  
pp. 40-46
Author(s):  
Rui Li Wang ◽  
Xiao Liang ◽  
Wen Zhou Lin ◽  
Xue Zhe Liu ◽  
Yun Long Yu

Verification and validation (V&V) are the primary means to assess the accuracy and reliability in computational fluid dynamics (CFD) simulation. V&V of the multi-medium detonation CFD model is conducted by using our independently-developed software --- Lagrangian adaptive hydrodynamics code in the 2D space (LAD2D) as well as a large number of benchmark testing models. Specifically, the verification of computational model is based on the basic theory of the computational scheme and mathematical physics equations, and validation of the physical model is accomplished by comparing the numerical solution with the experimental data. Finally, some suggestions are given about V&V of the detonation CFD model.


2012 ◽  
Vol 57 (1) ◽  
pp. 173-178 ◽  
Author(s):  
M. Shabani ◽  
A. Mazahery

Computational Fluid Dynamics (CFD) Simulation of Liquid-Liquid Mixing in Mixer Settler Mixer-settlers are widely used inmetallurgical, mineral and chemical process. One of the greatest challenges in the area of hydrometallurgy process simulation is agitation made by impeller inside mixer-settler which yet presents one of the most common operations. Computational fluid dynamics (CFD) model has been developed to predict the effect of different physical parameters including temperature and density on the mixing characteristics of the system. It is noted that non-isotropic nature of flow in a mixer-settler, the complex geometry of rotating impellers and the large disparity in geometric scales present are some of the factors which contribute to the simulation difficulty. The experimental data for different velocity outlet was also used in order to validate the model.


2015 ◽  
Vol 798 ◽  
pp. 170-174
Author(s):  
Paulo Henrique Terenzi Seixas ◽  
Paul Campos Santana Silva ◽  
Rudolf Huebner

In this article, the pilling process of hot steel bars is analyzed. During the loading three bars are placed over a wood surface, after those other three are placed over the previous for two times with 5 minutes intervals between them.They are all subject to a slow cooling by thermal radiation and free convection.A Computational Fluid Dynamics (CFD) model to predict the temperature profile of them is developed. Comparison between the CFD simulation results and experimental data yielded an average difference in the bars temperature between -0.3oC and 3.5oC.


2012 ◽  
Vol 557-559 ◽  
pp. 2249-2252 ◽  
Author(s):  
Song Lin Xu ◽  
Wen Qiang Mi

A computational fluid dynamics (CFD) model was used to simulate unsteady fluid flow in a two-dimensional channel. The flow was computed for several different geometries and velocity. Calculations show different flow patterns of the cavity spacer, the submerged spacer and the zigzag spacer. Applications of two-dimensional CFD simulation give a visual method to determine the advantages of each spacer type.


Author(s):  
Vahid Jalili ◽  
Mayur K. Patel ◽  
Christopher Bailey ◽  
Steve Begg ◽  
Henk Versteeg ◽  
...  

The aim of this paper has been to describe the novel approach adopted in studying the flow field within the Volumatic. In this study a combination of engineering tools such as Computational Fluid Dynamics (CFD), Laser Doppler Anemometry (LDA) and Flow visualization techniques have been employed. The initial part of the study involved the use of CFD in modelling the drug entering the Volumatic. The CFD model was then validated against measurements made using LDA. The agreement obtained was very good; this was particularly encouraging as the CFD analysis was carried out some six months prior to the experimental study.


2012 ◽  
Vol 476-478 ◽  
pp. 1345-1350
Author(s):  
Yan Wang ◽  
Song Du ◽  
Huai Gong Zhu ◽  
He Xu Ma ◽  
Shao Qing Zuo

A 3D two-phase flow computational fluid dynamics (CFD) model containing gas mal-distribution is developed in the Eulerian framework to predict the hydraulics of a dividing wall sieve tray. Variable and position dependent gas superficial velocity is used in the calculation. Using water-air system, simulations of flow patterns and hydraulics of a commercial- scale 1.2m diameter sieve tray are carried out using this model to testify its precision. Then, the same simulations of a dividing wall sieve tray with equal diameter are carried out. The results show that there are two backflow regions on a dividing wall tray, one is in the segmental area, and the other is in the region nearby junction of dividing wall and outlet weir. In the segmental area of trays with equal diameter, the area of backflow region of dividing wall trays is basically equal to that of conventional trays.


2021 ◽  
Author(s):  
Haresh Patel

A styrene polymerization in a lab-scale CSTR equipped with a pitched blade turbine impeller was simulated using the computational fluid dynamics (CFD) approach. The impeller motion was integrated in the geometry using the multiple reference frame (MRF) technique. The presence of non-linear source term and the highly coupled nature of transport equations of the polymerization, made the convergence difficult to achieve. The effects of the impeller speed, the input-output locations and the residence time on the polymerization in the CSTR were investigated. The CFD simulation shows that good mixing remained limited to the impeller region. Regions far from the impeller remained unmixed due to high viscosity of the polymer mass. The path lines of the particles, released at the inlet, were also generated to analyze the reaction progress as the chemicals travel throughout the reactor. The monomer conversion computed using the CFD model was compared to data reported in the literature. Conversion predicted using the CFD model is in good agreement with that obtained from the CSTR model at low residence time. However, the CFD predicted coversions were higher than those calculated from the CSTR model, at high residence time. It was found that the input-output locations had significant effect on the conversion and the homogeneity in the CSTR.


Sign in / Sign up

Export Citation Format

Share Document