scholarly journals Review of Constructions and Materials Used in Swedish Residential Buildings during the Post-War Peak of Production

Buildings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 99
Author(s):  
Björn Berggren ◽  
Maria Wall

One of the greatest challenges for the world today is the reduction of greenhouse gas emissions. As buildings contribute to almost a quarter of the greenhouse gas emissions worldwide, reducing the energy use of the existing building stock is an important measure for climate change mitigation. In order to increase the renovation pace, there is a need for a comprehensive technical documentation that describes different types of buildings in the existing building stock. The purpose of this study is to analyse and describe existing residential buildings in Sweden. The data are based on published reports from 1967 to 1994 that have not been publicly available in a database for other researchers to study until now. Data from the reports have been transferred to a database and analysed to create a reference for buildings and/or a description of building typology in Sweden. This study found that there is a rather large homogeneity in the existing residential building stock. However, it is not possible to use a single reference building or building technique to cover the majority of the existing buildings. In Sweden, common constructions for exterior walls in multi-dwelling buildings which should be used for further studies are insulated wood infill walls with clay brick façades, lightweight concrete walls with rendered façades and concrete sandwich walls. The most common constructions for one- and two-dwelling buildings are insulated wooden walls with clay brick façades or wooden façades. Furthermore, roof constructions with insulated tie beam and roof constructions where the tie beam is a part of the interior floor slab are frequently used and should be included in further studies.

2020 ◽  
pp. 1420326X2096216
Author(s):  
Olga Kolodiy ◽  
Guedi Capeluto

Carbon dioxide is the largest component of the human footprint and one of the major components of all greenhouse gases. The expected increase in population will lead to growth in energy consumption and greenhouse gas emissions. The building industry has the highest potential for reducing greenhouse gas emissions. Therefore, buildings should become not only efficient consumers but also energy producers, not a simple task in dense cities. The paper describes the feasibility and limitations of near zero energy design in highly dense urban conditions. The study was carried out by examination and comparison of various density design, alternatives of an existing urban plot in the coastal climate zone of Israel. Increased dwelling units’ number leads to higher total energy use on the one hand and mutual shading of new high-rise residential buildings on the other. Preserving solar rights for PV systems installation become more complex. The relation between urban density and solar rights in urban design, energy consumption and energy generation within plot borders and their implications are presented and discussed in the paper.


2019 ◽  
Vol 11 (22) ◽  
pp. 6482
Author(s):  
Katerina Sojkova ◽  
Martin Volf ◽  
Antonin Lupisek ◽  
Roman Bolliger ◽  
Tomas Vachal

Energy retrofitting of existing building stock has significant potential for the reduction of energy consumption and greenhouse gas emissions. Roughly half of the CO2 emissions from Czech building stock are estimated to be allocated to residential buildings. Approximately one-third of the Czech residential building stock have already been retrofitted, but retrofitting mostly takes place in large cities due to greater income. A favourable concept for the mass retrofitting of residential building stock, affordable even in low-income regions, was of interest. For a reference building, multi-criteria assessment of numerous retrofitting measures was performed. The calculation involved different building elements, materials, solutions, and energy-efficiency levels in combination with various heating systems. The assessment comprised environmental impact, represented by operational and embodied primary energy consumption and greenhouse gas emissions, and investment and operational costs using the annuity method. Analysis resulted in the identification of favourable retrofitting measures and showed that complex building retrofitting is advantageous from both a cost and an environmental point of view. The environmental burden could be decreased by approximately 10–30% even without photovoltaic installation, and costs per year could be decreased by around 40%.


2018 ◽  
Author(s):  
Adrian Camilleri ◽  
Richard P. Larrick ◽  
Shajuti Hossain ◽  
Dalia Echeverri

2021 ◽  
Vol 1 ◽  
Author(s):  
Jennie Moore

The British Columbia Institute of Technology (BCIT) is Canada's premier polytechnic. In 2008, BCIT partnered with its local electricity utility to hire a full-time energy manager. The following year, BCIT's School of Construction and the Environment initiated a campus-as-living-lab of sustainability project called Factor Four in the seven buildings it occupies on BCIT's main campus in Burnaby. The purpose was to explore whether a four-fold (75%) reduction in materials and energy use could be achieved without compromising service levels. By 2016, the project achieved a 50% reduction in energy use and associated greenhouse gas emissions. Factor Four attracted over four million dollars in funding, engaged over 250 students from 12 educational programs, and produced over $200,000 savings annually. In 2017, BCIT set an ambitious target to reduce its annual greenhouse gas emissions 33% below 2007 levels by 2023, and 80% by 2050, across all five of its campuses. BCIT’s ultimate goal is to become both greenhouse gas neutral and a net energy producer. By setting ambitious targets and systematically implementing energy efficiency improvements, utilizing waste-heat exchange, fuel switching, and developing on-site renewable energy, BCIT is on track to achieving its energy management and climate change goals.


Sign in / Sign up

Export Citation Format

Share Document