scholarly journals Phase 1 Dose Escalation Study of the Allosteric AKT Inhibitor BAY 1125976 in Advanced Solid Cancer—Lack of Association between Activating AKT Mutation and AKT Inhibition-Derived Efficacy

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1987
Author(s):  
Andreas Schneeweiss ◽  
Dagmar Hess ◽  
Markus Joerger ◽  
Andrea Varga ◽  
Stacy Moulder ◽  
...  

This open-label, phase I first-in-human study (NCT01915576) of BAY 1125976, a highly specific and potent allosteric inhibitor of AKT1/2, aimed to evaluate the safety, pharmacokinetics, and maximum tolerated dose of BAY 1125976 in patients with advanced solid tumors. Oral dose escalation was investigated with a continuous once daily (QD) treatment (21 days/cycle) and a twice daily (BID) schedule. A dose expansion in 28 patients with hormone receptor-positive metastatic breast cancer, including nine patients harboring the AKT1E17K mutation, was performed at the recommended phase 2 dose (R2D) of 60 mg BID. Dose-limiting toxicities (Grades 3–4) were increased in transaminases, γ-glutamyltransferase (γ-GT), and alkaline phosphatase in four patients in both schedules and stomach pain in one patient. Of the 78 patients enrolled, one patient had a partial response, 30 had stable disease, and 38 had progressive disease. The clinical benefit rate was 27.9% among 43 patients treated at the R2D. AKT1E17K mutation status was not associated with tumor response. Genetic analyses revealed additional mutations that could promote tumor cell growth despite the inhibition of AKT1/2. BAY 1125976 was well tolerated and inhibited AKT1/2 signaling but did not lead to radiologic or clinical tumor responses. Thus, the refinement of a selection of biomarkers for AKT inhibitors is needed to improve their monotherapy activity.

2020 ◽  
Vol 4 (9) ◽  
pp. 2032-2043 ◽  
Author(s):  
Je-Hwan Lee ◽  
Stefan Faderl ◽  
John M. Pagel ◽  
Chul Won Jung ◽  
Sung-Soo Yoon ◽  
...  

Abstract CWP232291 (CWP291) is a small-molecule inhibitor of Wnt signaling that causes degradation of β-catenin via apoptosis induction through endoplasmic reticulum stress activation. This first-in-human, open-label, dose-escalation study to evaluate the safety, maximum tolerated dose (MTD), and preliminary efficacy of CWP291 enrolled 69 patients with hematologic malignancies (acute myeloid leukemia [AML], n = 64; myelodysplastic syndrome, n = 5) in 15 dose-escalation cohorts of 4 to 334 mg/m2 using a modified 3+3 design and 1 dose-expansion cohort. CWP291 was administered IV daily for 7 days every 21 days. The most common treatment-emergent adverse events (TEAEs) were nausea (n = 44, 64%), vomiting (n = 32, 46%), diarrhea (n = 25, 36%), and infusion-related reactions (n = 20, 29%). Grade ≥3 TEAEs in >3 patients (5%) were pneumonia (n = 8, 12%); hypophosphatemia (n = 6, 8%); leukocytosis, nausea, cellulitis, sepsis, and hypokalemia (n = 5 each, 7% each); and hypertension (n = 4, 6%). Dose-limiting toxicities included nausea (n = 3) and abdominal pain, anaphylactic reaction, myalgia, and rash (n = 1, each); the MTD was defined at 257 mg/m2. CWP232204, the active metabolite of CWP291, showed pharmacokinetic linearity on both days 1 and 7, and a terminal half-life of ∼12 hours. Among 54 response-evaluable AML patients, there was one complete response at a dose of 153 mg/m2 and one partial response at 198 mg/m2; bone marrow blast percentage reduced from a median of 58.3% to 3.5% and 15.0% to 4.2%, respectively. Future studies will explore CWP291, with a mechanism of action aimed at eradication of earlier progenitors via Wnt pathway blockade, as combination therapy. This trial was registered at www.clinicaltrials.gov as #NCT01398462.


Blood ◽  
2012 ◽  
Vol 120 (3) ◽  
pp. 552-559 ◽  
Author(s):  
Jeffrey A. Zonder ◽  
Ann F. Mohrbacher ◽  
Seema Singhal ◽  
Frits van Rhee ◽  
William I. Bensinger ◽  
...  

Abstract This multicenter, first-in-human study evaluated the safety, tolerability, and pharmacokinetic and pharmacodynamic properties of the anti-CS1 monoclonal antibody elotuzumab. A standard 3 + 3 design was used to determine maximum tolerated dose; dose-limiting toxicities were assessed during cycle 1. Thirty-five patients with relapsed/refractory multiple myeloma were treated with intravenous elotuzumab at doses ranging from 0.5 to 20 mg/kg every 2 weeks. Patients who achieved at least stable disease after 4 treatments could receive another 4 treatments. No maximum tolerated dose was identified up to the maximum planned dose of 20 mg/kg. The most common adverse events, regardless of attribution, were cough, headache, back pain, fever, and chills. Adverse events were generally mild to moderate in severity, and adverse events attributed to study medication were primarily infusion-related. Plasma elotuzumab levels and terminal half-life increased with dose whereas clearance decreased, suggesting target-mediated clearance. CS1 on bone marrow–derived plasma cells was reliably saturated (≥ 95%) at the 10-mg/kg and 20-mg/kg dose levels. Using the European Group for Bone and Marrow Transplantation myeloma response criteria, 9 patients (26.5%) had stable disease. In summary, elotuzumab was generally well tolerated in this population, justifying further exploration of this agent in combination regimens.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3611-3611
Author(s):  
Ben George ◽  
Donald A. Richards ◽  
William Jeffery Edenfield ◽  
Steven L Warner ◽  
Lars Mouritsen ◽  
...  

3611 Background: TP-1287 is a an orally bioavailable phosphate prodrug of alvocidib, a cyclin dependent kinase 9 (CDK9) inhibitor. TP-1287 exhibits potent inhibition of intracellular kinases including CDK9. Inhibition of CDK9 leads to downregulation of the BCL-2 family member, MCL-1, which in turn inhibits tumor growth in preclinical animal models of prostate, breast, and lung carcinomas. Methods: This is a multicenter, Phase 1, dose escalation study using a standard 3+3 design with a modified Fibonacci scheme to examine the safety and clinical activity of TP-1287 in patients with advanced solid tumors. Patients will be added at the maximum tolerated dose (i.e. expansion cohort) to test TP-1287 as a single agent in patients with castrate resistant prostate cancer. Results: Twenty-two patients who were enrolled between December 2018 and January 2020 received a range of doses from 1 mg QD to 11 mg BID over 7 cohorts. Data are available for 20 patients as of the data cutoff date. TP-1287 plasma PK Cmax and AUC increased in near linear fashion over cohorts 1 thru 6, reaching 80 ng/mL and 499.3 ng*h/mL in cohort 6 for Cmax and AUC, respectively. TP-1287 treatment resulted in dose-dependent reductions of phospho-RNA Pol II, consistent with CDK9 inhibition, as measured by a flow cytometric assay assessing pharmacodynamic changes in phosphorylation state in PBMCs. The most frequently observed Grade 3 AE was unrelated anemia in 2 patients. All other events of Grade 3 (9 events/7 patients) and Grade 4 (1 event/seizure with new CNS mets) were unlikely related or unrelated. Clinical benefit was seen in one sarcoma patient with PR (15+cycles), one RCC patient with SD (7+cycles) and 2 bladder cancer patients with SD (6 and 8 cycles). Conclusions: These findings suggest that TP-1287 is tolerated as a monotherapy in patients with heavily pretreated, relapsed, refractory solid tumors and further clinical development in selected indications is warranted. Clinical trial information: NCT03298984 .


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. TPS11626-TPS11626 ◽  
Author(s):  
Noah Federman ◽  
Paul A. Meyers ◽  
Najat C. Daw ◽  
Jeffrey Toretsky ◽  
James Bradley Breitmeyer ◽  
...  

TPS11626 Background: Ewing sarcoma (ES) is a rare cancer that affects children and young adults. Patients with recurrent/refractory ES have a poor prognosis (5-year survival 10-15%) with no improvement despite advances in cytotoxic and targeted therapies. Genomic rearrangements resulting in fusion proteins and over-expression of ets family transcription factors occur in 95% of ES. In particular, the EWS-FLI1 oncogenic fusion creates a constitutively active transcription factor that drives the malignant ES phenotype. Strategies to target the EWS-FLI1 fusion protein have been limited by lack of specificity. A promising approach is to target the interaction of the ets transcription factor with its critical protein partner, RNA helicase A (RHA). TK216 is a novel small-molecule that directly binds to EWS-FLI1 and inhibits its function by blocking binding to RHA. TK216 demonstrates potent anti-proliferative effects on ES cell lines and xenografts. Methods: We initiated a Phase 1, first-in-human, open-label, multi-center, dose-escalation/dose-expansion trial of TK216 in patients with recurrent/refractory ES who are ≥12 years of age (ClinicalTrials.gov: NCT02657005). TK216 is dosed based on body surface area and administered as a continuous intravenous infusion for 7 days followed by 14 days rest every 21 days. Treatment may continue in the absence of disease progression. One intrapatient dose escalation is allowed. Enrollment of 6 to 8 cohorts using a 3+3 dose-escalation design is anticipated. During dose expansion, a total of 18 patients with ES will be accrued at the recommended Phase 2 dose (RP2D). The primary objective of the study is to determine the maximum tolerated dose and RP2D of TK216. Secondary objectives are to assess the safety profile, pharmacokinetics, pharmacodynamics, and antitumor activity of TK216. Molecular assays will be performed to characterize EWS-FLI or EWS-ets abnormalities in archival tumor tissue. The overall response rate, duration of response, progression-free survival, and overall survival will be determined in the expansion cohort. Nine patients have been enrolled since June 2016. Accrual to cohorts 1, 2, and 3 completed and cohort 4 opened in January 2017. Clinical trial information: NCT02657005.


Author(s):  
Noboru Yamamoto ◽  
Toshio Shimizu ◽  
Kan Yonemori ◽  
Shigehisa Kitano ◽  
Shunsuke Kondo ◽  
...  

SummaryBackground This open-label, phase 1 study investigated TAS4464, a potent NEDD8-activating enzyme inhibitor, in patients with advanced/metastatic solid tumors (JapicCTI-173,488; registered 13/01/2017). The primary objective was dose-limiting toxicities (DLTs). Maximum-tolerated dose (MTD) was investigated using an accelerated titration design. Methods The starting 10-mg/m2 dose was followed by an initial accelerated stage (weekly dosing; n = 11). Based on liver function test (LFT) results, a 14-day, 20-mg/m2 dose lead-in period was implemented (weekly dosing with lead-in; n = 6). Results Abnormal LFT changes and gastrointestinal effects were the most common treatment-related adverse events (AEs). DLTs with 56-mg/m2 weekly dosing occurred in 1/5 patients; five patients had grade ≥ 2 abnormal LFT changes at 40- and 56-mg/m2 weekly doses. Further dose escalation ceased because of the possibility of severe abnormal LFT changes occurring. DLTs with weekly dosing with lead-in occurred in 1/5 patients at a 56-mg/m2 dose; MTD could not be determined because discontinuation criteria for additional enrollment at that particular dose level were met. As no further enrollment at lower doses occurred, dose escalation assessment was discontinued. Serious treatment-related AEs, AEs leading to treatment discontinuation, and DLTs were all related to abnormal LFT changes, suggesting that TAS4464 administration could affect liver function. This effect was dose-dependent but considered reversible. Complete or partial responses to TAS4464 were not observed; one patient achieved prolonged stable disease. Conclusions MTD could not be determined due to TAS4464 effects on liver function. Further evaluation of the mechanism of NEDD8-activating enzyme inhibitor-induced abnormal liver function is required. Trial registration number JapicCTI-173,488 (registered with Japan Pharmaceutical Information Center). Registration date 13 January 2017


2018 ◽  
Vol 185 (3) ◽  
pp. 623-627 ◽  
Author(s):  
C. Michel Zwaan ◽  
Stefan Söderhäll ◽  
Benoit Brethon ◽  
Matteo Luciani ◽  
Carmelo Rizzari ◽  
...  

2018 ◽  
Vol 81 (4) ◽  
pp. 727-737 ◽  
Author(s):  
Frederik Marmé ◽  
Carlos Gomez-Roca ◽  
Kristina Graudenz ◽  
Funan Huang ◽  
John Lettieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document