scholarly journals Connecting the Missing Dots: ncRNAs as Critical Regulators of Therapeutic Susceptibility in Breast Cancer

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2698
Author(s):  
Elena-Georgiana Dobre ◽  
Sorina Dinescu ◽  
Marieta Costache

Whether acquired or de novo, drug resistance remains a significant hurdle in achieving therapeutic success in breast cancer (BC). Thus, there is an urge to find reliable biomarkers that will help in predicting the therapeutic response. Stable and easily accessible molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are regarded as valuable prognostic biomarkers and therapeutic targets since they act as crucial regulators of the various mechanisms involved in BC drug resistance. Here, we reviewed the current literature on ncRNAs as mediators of resistance to systemic therapies in BC. Interestingly, upon integrating data results from individual studies, we concluded that miR-221, miR-222, miR-451, Urothelial Carcinoma Associated 1 (UCA1), and Growth arrest-specific 5 (GAS5) are strong candidates as prognostic biomarkers and therapeutic targets since they are regulating multiple drug resistance phenotypes in BC. However, further research around their clinical implications is needed to validate and integrate them into therapeutic applications. Therefore, we believe that our review may provide relevant evidence for the selection of novel therapeutic targets and prognostic biomarkers for BC and will serve as a foundation for future translational research in the field.

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2011 ◽  
Author(s):  
Sungbin Park ◽  
Heejoo Kim ◽  
Hwee Won Ji ◽  
Hyeon Woo Kim ◽  
Sung Hwan Yun ◽  
...  

Paclitaxel (Tx) is a widely used therapeutic chemical for breast cancer treatment; however, cancer recurrence remains an obstacle for improved prognosis of cancer patients. In this study, cold atmospheric plasma (CAP) was tested for its potential to overcome the drug resistance. After developing Tx-resistant MCF-7 (MCF-7/TxR) breast cancer cells, CAP was applied to the cells, and its effect on the recovery of drug sensitivity was assessed in both cellular and molecular aspects. Sensitivity to Tx in the MCF-7/TxR cells was restored up to 73% by CAP. A comparison of genome-wide expression profiles between the TxR cells and the CAP-treated cells identified 49 genes that commonly appeared with significant changes. Notably, 20 genes, such as KIF13B, GOLM1, and TLE4, showed opposite expression profiles. The protein expression levels of selected genes, DAGLA and CEACAM1, were recovered to those of their parental cells by CAP. Taken together, CAP inhibited the growth of MCF-7/TxR cancer cells and recovered Tx sensitivity by resetting the expression of multiple drug resistance–related genes. These findings may contribute to extending the application of CAP to the treatment of TxR cancer.


2016 ◽  
Vol 10 ◽  
pp. BCBCR.S38529 ◽  
Author(s):  
Tyler J. Kochel ◽  
Olga G. Goloubeva ◽  
Amy M. Fulton

Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) are indicators of a poor prognosis in breast cancer. Using several independent publicly available breast cancer gene expression databases, we investigated other members of the PGE2 pathway. PGE2 is produced by COX-2 and actively exported by multiple drug resistance-associated protein 4 (MRP4) into the extracellular microenvironment, where PGE2 can bind four cognate EP receptors (EP1–EP4) and initiate diverse biological signaling pathways. Alternatively, PGE2 is imported via the prostaglandin transporter (PGT) and metabolized by 15-prostaglandin dehydrogenase (15-PGDH/HPGD). We made the novel observation that MRP4, PGT, and 15-PGDH are differentially expressed among distinct breast cancer molecular subtypes; this finding was confirmed in independent datasets. In triple-negative breast cancer, the observed gene expression pattern (high COX-2, high MRP4, low PGT, and low 15-PGDH) would favor high levels of tumor-promoting PGE2 in the tumor microenvironment that may contribute to the overall poor prognosis of triple-negative breast cancer.


Biochimie ◽  
2016 ◽  
Vol 124 ◽  
pp. 53-64 ◽  
Author(s):  
Geetika Chakravarty ◽  
Aditi Mathur ◽  
Pallavi Mallade ◽  
Samantha Gerlach ◽  
Joniece Willis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document