scholarly journals Proteomic Studies of Primary Acute Myeloid Leukemia Cells Derived from Patients Before and during Disease-Stabilizing Treatment Based on All-Trans Retinoic Acid and Valproic Acid

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2143
Author(s):  
Maria Hernandez-Valladares ◽  
Rebecca Wangen ◽  
Elise Aasebø ◽  
Håkon Reikvam ◽  
Frode S. Berven ◽  
...  

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.

2021 ◽  
Vol 14 (5) ◽  
pp. 423
Author(s):  
Øystein Bruserud ◽  
Galina Tsykunova ◽  
Maria Hernandez-Valladares ◽  
Hakon Reikvam ◽  
Tor Henrik Anderson Tvedt

Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.


Cancer ◽  
2005 ◽  
Vol 104 (12) ◽  
pp. 2717-2725 ◽  
Author(s):  
Gesine Bug ◽  
Markus Ritter ◽  
Barbara Wassmann ◽  
Claudia Schoch ◽  
Thorsten Heinzel ◽  
...  

2006 ◽  
Vol 66 (17) ◽  
pp. 8903-8911 ◽  
Author(s):  
Giuseppe Cimino ◽  
Francesco Lo-Coco ◽  
Susanna Fenu ◽  
Lorena Travaglini ◽  
Erica Finolezzi ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2302-2308 ◽  
Author(s):  
Andres O. Soriano ◽  
Hui Yang ◽  
Stefan Faderl ◽  
Zeev Estrov ◽  
Francis Giles ◽  
...  

The combination of a DNA hypomethylating agent with a histone deacetylase inhibitor has synergistic antileukemia activity and may restore sensitivity to all-trans retinoic acid (ATRA). We conducted a phase 1/2 study of the combination of 5-azacitidine (5-AZA), valproic acid (VPA), and ATRA in patients with acute myeloid leukemia or high-risk myelodysplastic syndrome. 5-AZA was administered subcutaneously at a fixed dose of 75 mg/m2 daily for 7 days. VPA was dose-escalated and given orally daily for 7 days concomitantly with 5-AZA. ATRA was given at 45 mg/m2 orally daily for 5 days, starting on day 3. A total of 53 patients were treated. Their median age was 69 years (range, 5-84 years). The maximum tolerated dose of VPA in this combination was 50 mg/kg daily for 7 days. Dose-limiting toxicity was reversible neurotoxicity. The overall response rate was 42%. In previously untreated older patients, the response rate was 52%. Median number of courses to response was 1 (range, 1-3 courses). Median remission duration was 26 weeks, and median survival has not been reached. A significant decrease in global DNA methylation and induction of histone acetylation were achieved. VPA blood levels were higher in responders (P < .005). In conclusion, the combination studied is safe and has significant clinical activity. This clinical trial was registered at www.clinicaltrials.gov as no. NCT00326170.


Cancer ◽  
2006 ◽  
Vol 106 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Andrea Kuendgen ◽  
Mathias Schmid ◽  
Richard Schlenk ◽  
Sabine Knipp ◽  
Barbara Hildebrandt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document