scholarly journals Immunotherapy in Medulloblastoma: Current State of Research, Challenges, and Future Perspectives

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5387
Author(s):  
Marije J. Voskamp ◽  
Shuang Li ◽  
Kim R. van Daalen ◽  
Sandra Crnko ◽  
Toine ten Broeke ◽  
...  

Medulloblastoma (MB), a primary tumor of the central nervous system, is among the most prevalent pediatric neoplasms. The median age of diagnosis is six. Conventional therapies include surgical resection of the tumor with subsequent radiation and chemotherapy. However, these therapies often cause severe brain damage, and still, approximately 75% of pediatric patients relapse within a few years. Because the conventional therapies cause such severe damage, especially in the pediatric developing brain, there is an urgent need for better treatment strategies such as immunotherapy, which over the years has gained accumulating interest. Cancer immunotherapy aims to enhance the body’s own immune response to tumors and is already widely used in the clinic, e.g., in the treatment of melanoma and lung cancer. However, little is known about the possible application of immunotherapy in brain cancer. In this review, we will provide an overview of the current consensus on MB classification and the state of in vitro, in vivo, and clinical research concerning immunotherapy in MB. Based on existing evidence, we will especially focus on immune checkpoint inhibition and CAR T-cell therapy. Additionally, we will discuss challenges associated with these immunotherapies and relevant strategies to overcome those.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaojuan Shi ◽  
Daiqun Zhang ◽  
Feng Li ◽  
Zhen Zhang ◽  
Shumin Wang ◽  
...  

AbstractAsparagine-linked (N-linked) glycosylation is ubiquitous and can stabilize immune inhibitory PD-1 protein. Reducing N-linked glycosylation of PD-1 may decrease PD-1 expression and relieve its inhibitory effects on CAR-T cells. Considering that the codon of Asparagine is aac or aat, we wondered if the adenine base editor (ABE), which induces a·t to g·c conversion at specific site, could be used to reduce PD-1 suppression by changing the glycosylated residue in CAR-T cells. Our results showed ABE editing altered the coding sequence of N74 residue of PDCD1 and downregulated PD-1 expression in CAR-T cells. Further analysis showed ABE-edited CAR-T cells had enhanced cytotoxic functions in vitro and in vivo. Our study suggested that the single base editors can be used to augment CAR-T cell therapy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 38-39
Author(s):  
Erica Lynne Braverman ◽  
Andrea Dobbs ◽  
Darlene A. Monlish ◽  
Craig Byersdorfer

BACKGROUND: While chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of relapsed/refractory acute lymphoblastic leukemia (ALL), treatment failures continue to occur. In studying therapeutic T cell function, it has become clear that achieving a memory-like phenotype is ideal for CAR-T production. This is likely related to the enhanced oxidative metabolic potential of this subset, which allows for improved persistence and enhanced anti-leukemia activity in vivo. However, current expansion protocols drive T cells towards terminal differentiation, decreasing the number of T cells fit for the in vivo environment. Finding methods to improve the yield of memory-like cells without sacrificing T cell expansion has been challenging. AMP-activated protein kinase (AMPK) is a key metabolic regulator responsible for promoting mitochondrial biogenesis and oxidative metabolism, and is more active in memory T cells at baseline. It is similarly induced by TCR ligation, making it unlikely that it would significantly detract from proliferation. These properties make activation of AMPK a potential candidate pathway for improving the yield of more functional T cells for CAR-T cell therapy. METHODS: AMPK is a heterotrimeric protein complex consisting of alpha, beta, and gamma domains. Functionally, the alpha subunit contains the kinase domain, which is activated by phosphorylation. The gamma subunit controls the phosphorylation, and therefore the activity, of the alpha domain. To increase AMPK signaling in T cells, we cloned the gamma subunit into a lentiviral plasmid containing the elongation factor 1a (EF1a) promoter and a green fluorescent protein (GFP) tag. An empty vector, containing GFP only, served as a negative control. Human T cells were isolated from three separate donors, transduced with our lentiviral construct, and expanded in vitro in the presence of IL-2. AMPK activity was assessed by phosphorylation of Thr172 on the AMPKα subunit as well as phosphorylation of S555 on downstream target Unc-51-like autophagy activating kinase (ULK1) using western blot densitometry, normalized to the total protein amounts. Memory marker expression and mitochondrial density (using Mitotracker Red) were analyzed by flow cytometry. Oxidative metabolism and spare respiratory capacity (SRC) were determined using the Seahorse Metabolic Analyzer. Fold changes for in vitro expansion were calculated by adjusting manual cell counts to reflect GFP positivity and CD4+/CD8+ surface staining. RESULTS: The AMPK gamma subunit was efficiently transduced and expressed by human T cells as measured by GFP expression, qRT-PCR, and western blot analysis. Further, AMPK activity increased in GFP+ cells as indicated by the phosphorylation of AMPKα Thr172 (1.93 +/- 0.05 vs 0.6 +/- 0.09, p<0.001) and ULK1 S555 (1.28 +/- 0.11 vs 0.67 +/- 0.08, p<0.01). Cells transduced with AMPK augmented expression of memory markers CD62L, CD27, and CCR7, with an increased yield of stem cell memory-like T cells marked by co-expression of CD45RA and CD62L (Figure 1). In addition, AMPK-transduced T cells showed a statistically significant increase in mitochondrial density along with notable enhancement of SRC and maximal oxygen consumption rates (Figure 2A,B). Furthermore, the rate of expansion of AMPK-transduced T cells did not differ significantly from Empty-transduced controls, and in fact trended towards increased in both CD4+ and CD8+ cells (Figure 3A). Indeed, the improved rate of expansion in AMPK-transduced CD4+ T cells led to a measurable increase in CD4+ T cell percentages by flow cytometry (Figure 3B). DISCUSSION: Here we present an efficient and direct method to increase AMPK activity in human T cells and demonstrate that increased AMPK activity endows T cells with a variety of characteristics ideal for CAR-T cell therapy. These features include increased memory-marker expression, enhanced SRC and oxidative metabolism, equivalent to augmented in vitro expansion, and improved CD4+ T cell yields. Further studies are ongoing to assess the activity and function of AMPK-transduced CAR-T cells both in vitro and in vivo. Disclosures No relevant conflicts of interest to declare.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Chunyi Shen ◽  
Zhen Zhang ◽  
Yonggui Tian ◽  
Feng Li ◽  
Lingxiao Zhou ◽  
...  

Abstract Background Chimeric antigen receptor T (CAR-T) cell therapy has limited effects in the treatment of solid tumors. Sulforaphane (SFN) is known to play an important role in inhibiting tumor growth, but its effect on CAR-T cells remains unclear. The goal of the current study was to determine whether combined CAR-T cells and SFN could provide antitumor efficacy against solid tumors. Methods The effect of combined SFN and CAR-T cells was determined in vitro using a co-culture system and in vivo using a xenograft mouse model. We further validated the effects of combination therapy in patients with cancer. Results In vitro, the combination of SFN and CAR-T cells resulted in enhanced cytotoxicity and increased lysis of tumor cells. We found that SFN suppressed programmed cell death 1 (PD-1) expression in CAR-T cells and potentiated antitumor functions in vitro and in vivo. As a ligand of PD-1, programmed cell death ligand 1 (PD-L1) expression was also decreased in tumor cells after SFN treatment. In addition, β-TrCP was increased by SFN, resulting in higher activation of ubiquitination-mediated proteolysis of PD-L1, which induced PD-L1 degradation. The combination of SFN and CAR-T cell therapy acted synergistically to promote better immune responses in vivo compared with monotherapy. In clinical treatments, PD-1 expression was lower, and proinflammatory cytokine levels were higher in patients with various cancers who received CAR-T cells and took SFN orally than that in the control group. Conclusion SFN improves the cytotoxicity of CAR-T cells by modulating the PD-1/PD-L1 pathway, which may provide a promising strategy for the combination of SFN with CAR-T cells for cancer immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yamin Jie ◽  
Guijun Liu ◽  
Lina Feng ◽  
Ying Li ◽  
Mingyan E ◽  
...  

In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small-cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. In this study, we constructed three different PTK7-specific CAR (PTK7-CAR1/2/3), each comprising a humanized PTK7-specific single-chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus-mediated transduction of human activated T cells accordingly, and we sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo. T cells transduced with all three PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression levels of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.


2020 ◽  
Author(s):  
Yamin Jie ◽  
Guijun Liu ◽  
Lina Feng ◽  
Ying Li ◽  
Mingyan E ◽  
...  

Abstract Background: In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. Methods: In this study, we constructed 3 different PTK7-specific CAR (PTK7-CAR1/2/3) each comprising a humanized PTK7-specific single chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus mediated transduction of human activated T cells accordingly, and sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo.Results: T cells transduced with all 3 PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression level of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Conclusion: Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.


2020 ◽  
Author(s):  
Hui-Shan Li ◽  
Nicole M. Wong ◽  
Elliot Tague ◽  
John T. Ngo ◽  
Ahmad S. Khalil ◽  
...  

SUMMARYChimeric antigen receptor (CAR) T cell immunotherapy has the potential to revolutionize cancer medicine. However, excessive CAR activation, lack of tumor-specific surface markers, and antigen escape have limited the safety and efficacy of CAR T cell therapy. A multi-antigen targeting CAR system that is regulated by safe, clinically-approved pharmaceutical agents is urgently needed, yet only a few simple systems have been developed, and even fewer have been evaluated for efficacy in vivo. Here, we present NASCAR (NS3 ASsociated CAR), a collection of induc-ible ON and OFF switch CAR circuits engineered with a NS3 protease domain deriving from the Hepatitis C Virus (HCV). We establish their ability to regulate CAR activity using multiple FDA-approved antiviral protease inhibitors, including grazoprevir (GZV), both in vitro and in a xenograft tumor model. In addition, we have engineered several dual-gated NASCAR circuits, consisting of an AND logic gate CAR, universal ON-OFF CAR, and a switchboard CAR. These engineered receptors enhance control over T cell activity and tumor-targeting specificity. Together, our com-prehensive set of multiplex drug-gated CAR circuits represent a dynamic, tunable, and clinically-ready set of modules for enhancing the safety of CAR T cell therapy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 41-42
Author(s):  
M. Eric Kohler ◽  
Zachary Walsh ◽  
Kole Degolier ◽  
Terry J. Fry

The advent of chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of relapsed/refractory acute lymphoblastic leukemia (r/r ALL). CD19 directed CAR T cells have demonstrated the ability to induce complete remissions in up to 90% of r/r ALL patients. Despite this remarkable upfront success, relapse after CAR T cell therapy remains a major obstacle to long term remissions. A major mechanism for relapse after CD19-directed CAR T cell therapy is the recurrence of antigen-negative ALL cells. In recent years, CD22 CAR T cell therapy has emerged as an effective salvage therapy for patients with CD19-negative ALL. In a phase I clinical trial, CD22 CAR T cells were able to induce remission in up to 80% of patients with CD19-negative ALL. Patients achieving remission, who did not undergo a consolidative hematopoietic stem cell transplant, were found to be at high risk of relapse due to downregulation of the CD22 antigen below the threshold required for effective CD22 CAR T cell activity. Thus, strategies to increase the antigen-sensitivity of CD22 CAR T cells have the potential to enhance the induction and duration of remission in ALL patients. As the properties of a CAR that influence sensitivity to antigen are not well defined, we began by testing the impact of increasing the affinity of the single-chain fragment variable (scFv) for the CD22 antigen. T cells from healthy donors were activated and transduced with a second-generation, 4-1BB CAR containing either the standard affinity (SA)-m971 scFv used in the prior clinical trial, or a high affinity (HA) scFv generated by affinity maturation of the m971 scFv. SA- and HA-CD22 CAR T cells were evaluated in vitro and in vivo against clones of the pre-B ALL cell line, NALM6, which express CD22 at wild type levels (CD22WT), sub-physiologic levels (CD22Lo), supra-physiologic levels (CD22Hi) or in which CD22 was deleted (CD22Neg). We found that the amount of CD22 expressed on the leukemia cells resulted in dose-dependent expression of activation markers, such as CD69 and CD25 (p<0.05) on CD22 CAR T cells. Similarly, CAR T cell functions, such as the secretion of interferon-gamma (IFNg, p<0.0001) and interleukin-2 (IL-2, p<0.0001) as well as cytotoxic degranulation (p<0.0001) were all significantly impacted by the amount of CD22 on the surface of NALM6. A similar pattern of antigenic dose-response was seen in the signaling of CAR T cells, with phosphorylation of ERK reflecting the level of CD22 antigen (p<0.001) and correlating with the increased in vivo efficacy of the CAR T cells against CD22WT NALM6, relative to CD22Lo NALM6. Increasing the affinity of the CD22 CAR did not impact the in vivo efficacy against CD22WT NALM6 at either a therapeutic or subtherapeutic dose, however, HA-CD22 CAR T cells significantly prolonged the survival of NSG mice with CD22Lo NALM6, relative to SA-CD22 CAR T cells (p<0.01). The enhanced activity of HA-CD22 CAR T cells against CD22Lo leukemia did not correlate with improved in vitro functionality, as the HA-CD22 CAR T cells surprisingly demonstrated lower IL-2 secretion (p<0.01), lower proliferation (p<0.05) and diminished in vitro lysis of CD22Lo NALM6 (p<0.05), relative to SA-CD22 CAR T cells. ERK phosphorylation, however, was significantly increased in HA-CD22 CAR T cells (p<0.01) and was the only in vitro marker which correlated with the enhanced in vivo activity seen with the affinity-matured CAR. Previous clinical experience has demonstrated the importance of using a short linker (consisting of a single G4S sequence) between the heavy and light chains of the m971 scFv, therefore we next evaluated the impact of linker length on the activity of the HA-CD22 CAR. HA-CD22 CARs were generated with either a short- or long-linker (G4S x1 vs G4S x3, respectively) and evaluated in vitro and in vivo. While the short linker improved proliferation in vitro, there was no significant impact of linker length on cytokine production or lysis of CD22Lo NALM6. In a xenograft model, HA-CD22 CAR T cells with the long-linker demonstrated slower progression of CD22Lo leukemia and significantly prolonged survival of NSG mice with CD22WT leukemia relative to HA-CD22 CAR T cells with the short-linker (p<0.01). Taken together, these studies suggest that increasing the affinity of a scFv is a promising strategy for enhancing CAR sensitivity to low levels of target antigen, with the potential to decrease post-CAR T cell relapses due to antigen downregulation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1715-1715
Author(s):  
Ryan Urak ◽  
Ashlie Munoz ◽  
Hui-Ju Hsieh ◽  
Ellie Taus ◽  
Stephen J Forman ◽  
...  

Abstract Dexamethasone (Dex) has been a mainstay for the treatment of inflammatory pathologies, such as in autoimmunity and cytokine release syndrome (CRS) from immunotherapies. However, its effects on chimeric antigen receptor (CAR) T cells, during CRS events have not been interrogated. In this study, we treated the CAR T cells with different concentrations of Dex (0, 1, and 10µM) single or multiple times in vitro and expanded them for one week. We demonstrated that Dex treatment did not inhibit CAR T cell growth and functionality even with concentrations higher than what would be used in the clinic. Interestingly, we observed that the Dex treatment significantly upregulated endogenous gamma chain cytokine receptor-interleukin 7 receptor alpha (IL7Rα) at the mRNA and protein levels (P=0.0005) (Fig 1a). These effects are not T cell subset dependent because we observed upregulation of IL7Rα on PBMC and enriched naïve and memory T cell-derived CAR T cells. Furthermore, un-transduced T cells also exhibited IL7Rα increase, which suggests that the upregulation of IL7Rα is the general mechanism of Dex for T cells. IL7Rα is well accepted as a key element to CAR T cell persistence and memory T cell formation. However, the IL7R-IL-7 signaling pathway is limited due to the downregulation of high-affinity IL7Rα during the activation and expansion of CAR T cells. We found out that Dex can upregulate endogenous IL7Rα in a reversible manner, which is an important factor for safety in clinical application. We showed that ex vivo upregulation of IL7Ra by a single Dex treatment subsequently enhanced CAR T cell persistence and anti-tumor efficacy in vivo in the presence of IL-7. To further confirm the positive effects of Dex on CAR T cell therapy, we performed a combinatorial therapy by delivering CD19 CAR T cells to acute lymphoid leukemia (ALL) tumor-bearing NOD-scid IL2Rgammanull (NSG) mice and then administering Dex (1mg/kg) and IL-7-expressing CHO cells. Consistently, we observed a complete cure of tumor-bearing mice only in the CD19 CAR T cell group that was given both Dex and IL-7, but not CAR alone and Dex only groups (Fig 1b-c) (P=0.0006). Mice survived, tumor-free, over 150 days. Supportively, we observed CAR T cell persistence only in the CAR T cells combined with Dex and IL7 group but not in the CAR group. To determine if Dex influenced CAR T cells beyond IL7Rα, we performed gene analysis and demonstrated that IL7Rα, but not other γ chain cytokines was selectively upregulated by Dex, which supports previous reports from Lee et al. that Dex and glucocorticoid receptors (GR) complex binds upstream of the IL-7rα promoter preferentially regulating IL7Rα. Furthermore, we utilized Nanostring technology to analyze CAR T cells with and without Dex treatment for mRNA signatures that related to signaling pathways. We observed pathways related to activation, migration, persistence, and chemokine production were upregulated, while pathways related to apoptosis and TCR diversity were downregulated after Dex treatment. The results indicated that Dex may regulate multiple functions of CAR T cells. Overall, our studies in both in vitro and in vivo treatment support that Dex does not have negative effects on CAR T cell potency but provides insight into an unforeseen strategy to improve CAR T cell therapies through upregulation of IL-7Rα and improving T cell activation, trafficking, and persistence. We believe our observations could extend beyond hematological malignancies to a potentially potent and durable therapy for solid tumors, as Dex is not only an immunosuppressive agent but also an anti-cancer drug used against a multitude of tumors to prevent tumor growth as well as modulate the microenvironment. Our data also provided rationale on starting CAR T cell therapy without the necessity of tapering off the ongoing steroid treatment. Figure 1 Figure 1. Disclosures Forman: Allogene: Consultancy; Lixte Biotechnology: Consultancy, Current holder of individual stocks in a privately-held company; Mustang Bio: Consultancy, Current holder of individual stocks in a privately-held company. Wang: Pepromene Bio, Inc.: Consultancy.


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Alejandra Leivas ◽  
Antonio Valeri ◽  
Laura Córdoba ◽  
Almudena García-Ortiz ◽  
Alejandra Ortiz ◽  
...  

AbstractCAR-T-cell therapy against MM currently shows promising results, but usually with serious toxicities. CAR-NK cells may exert less toxicity when redirected against resistant myeloma cells. CARs can be designed through the use of receptors, such as NKG2D, which recognizes a wide range of ligands to provide broad target specificity. Here, we test this approach by analyzing the antitumor activity of activated and expanded NK cells (NKAE) and CD45RA− T cells from MM patients that were engineered to express an NKG2D-based CAR. NKAE cells were cultured with irradiated Clone9.mbIL21 cells. Then, cells were transduced with an NKG2D-4-1BB-CD3z-CAR. CAR-NKAE cells exhibited no evidence of genetic abnormalities. Although memory T cells were more stably transduced, CAR-NKAE cells exhibited greater in vitro cytotoxicity against MM cells, while showing minimal activity against healthy cells. In vivo, CAR-NKAE cells mediated highly efficient abrogation of MM growth, and 25% of the treated mice remained disease free. Overall, these results demonstrate that it is feasible to modify autologous NKAE cells from MM patients to safely express a NKG2D-CAR. Additionally, autologous CAR-NKAE cells display enhanced antimyeloma activity demonstrating that they could be an effective strategy against MM supporting the development of NKG2D-CAR-NK-cell therapy for MM.


Sign in / Sign up

Export Citation Format

Share Document