scholarly journals Selective Hydrogenation of Acetylene Catalysed by a B12N12 Cluster Doped with a Single Nickel Atom: A DFT Study

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 115 ◽  
Author(s):  
Yun Wang ◽  
Lihua Kang

To obtain a catalyst based on a non-precious metal that can replace traditional palladium-based selective catalysts of acetylene hydrogenation, the catalytic performances of two different configurations of a B12N12 cluster doped with a single nickel atom were studied by a density functional theory computational approach. After analysing the effect that the adsorption of reactants onto the clusters has on the reaction path, we determined the lowest energy path for the acetylene double hydrogenation. Comparing the acetylene hydrogenation activities and ethylene product selectivities of the B11N12Ni and B12N11Ni clusters, which have different doping sites, we determined the activities of these two catalysts to be similar to each other; however, the B11N12Ni cluster was calculated to have higher selectivity for ethylene as a product. This difference may be related to the moderate adsorption of hydrogen and acetylene on the B11N12Ni cluster. As a new type of nickel-based single-atom catalyst, B11N12Ni clusters may have research value in the selective hydrogenation of acetylene.

2018 ◽  
Vol 5 (7) ◽  
pp. 171598 ◽  
Author(s):  
Wanqi Gong ◽  
Lihua Kang

The mechanisms of selective hydrogenation of acetylene to ethylene on B 11 N 12 Pd single-atom catalyst were investigated through the density functional theory by using the 6-31++G** basis set. We studied the adsorption characteristics of H 2 and C 2 H 2 , and simulated the reaction mechanism. We discovered that H 2 underwent absolute dissociative chemisorption on single-atom Pd, forming the B 11 N 12 Pd(2H) dihydride complex, and then the hydrogenation reaction with C 2 H 2 proceeded. The hydrogenation reaction of acetylene on the B 11 N 12 Pd complex complies with the Horiuti–Polanyi mechanism, and the energy barrier was as low as 26.55 kcal mol −1 . Meanwhile, it also has a higher selectivity than many bimetallic alloy single-atom catalysts.


2017 ◽  
Vol 19 (27) ◽  
pp. 18010-18017 ◽  
Author(s):  
Kunran Yang ◽  
Bo Yang

The stabilities and catalytic performances of single-atom alloy (SAA) structures under the reaction conditions of acetylene hydrogenation are thoroughly examined utilizing density functional theory (DFT) calculations.


2021 ◽  
pp. 014459872199495
Author(s):  
Songjian Du ◽  
Tingting Li ◽  
Xinwei Wang ◽  
Liqiang Zhang ◽  
Zhengda Yang ◽  
...  

Hydrodesulfurization reaction, as the last step of hydrothermal cracking reaction, is of great significance for the reduction of viscosity and desulfurization of heavy oil. Based on Density Functional Theory and using Dmol3 module of Materials Studio, this research simulated the adsorption and hydrodesulfurization of thiophene on Ni2P (001) surface, and discussed the hydrodesulfurization reaction mechanism of thiophene on Ni2P (001) surface. It was found that the direct hydrodesulfurization of thiophene had more advantages than the indirect hydrodesulfurization of thiophene. Finally, the optimal reaction path was determined: C4H4S+H2→C4H6.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiang Ouyang ◽  
Ling Zhang ◽  
Leijiao Li ◽  
Wei Chen ◽  
Zhongmin Tang ◽  
...  

Abstract Stanene (Sn)-based materials have been extensively applied in industrial production and daily life, but their potential biomedical application remains largely unexplored, which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials. Herein, we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional (2D) Sn nanosheets (SnNSs). The obtained SnNSs exhibited a typical sheet-like structure with an average size of ~ 100 nm and a thickness of ~ 5.1 nm. After PEGylation, the resulting PEGylated SnNSs (SnNSs@PEG) exhibited good stability, superior biocompatibility, and excellent photothermal performance, which could serve as robust photothermal agents for multi-modal imaging (fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer. Furthermore, we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs, revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal. This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics. This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.


2021 ◽  
Author(s):  
Xiaohang Wu ◽  
Ying Lv ◽  
Yuyuan Bai ◽  
Haizhu Yu ◽  
Manzhou Zhu

Herein, density functional theory (DFT) calculations were performed to elucidate the mechanism of the reversible single atom size conversion between [Au10(DMPP)4(C6H11C≡C)]3+ and [Au9(DMPP)4]3+ (DMPP is 2,2’-bis-(dimethylphosphino)-1,1’-biphenyl, the simplified, theoretical model...


Sign in / Sign up

Export Citation Format

Share Document