scholarly journals The Effects of the Crystalline Phase of Zirconia on C–O Activation and C–C Coupling in Converting Syngas into Aromatics

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 262
Author(s):  
Sheng Wang ◽  
Yue Fang ◽  
Zhen Huang ◽  
Hualong Xu ◽  
Wei Shen

Zirconia has recently been used as an efficient catalyst in the conversion of syngas. The crystalline phases of ZrO2 in ZrO2/HZSM-5 bi-functional catalysts have important effects on C–O activation and C–C coupling in converting syngas into aromatics and been investigated in this work. Monoclinic ZrO2 (m-ZrO2) and tetragonal ZrO2 (t-ZrO2) were synthesized by hydrothermal and chemical precipitation methods, respectively. The results of in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTs) revealed that there were more active hydroxyl groups existing on the surface of m-ZrO2, and CO temperature programmed desorption (CO-TPD) results indicated that the CO adsorption capacity of m-ZrO2 was higher than that of t-ZrO2, which can facilitate the C–O activation of m-ZrO2 for syngas conversion compared to that of t-ZrO2. And the CO conversion on the m-ZrO2 catalyst was about 50% more than that on the t-ZrO2 catalyst. 31P and 13C magic angle spinning nuclear magnetic resonance (MAS NMR) analysis revealed a higher acid and base density of m-ZrO2 than that of t-ZrO2, which enhanced the C–C coupling. The selectivity to CH4 on the m-ZrO2 catalyst was about 1/5 of that on the t-ZrO2 catalyst in syngas conversion. The selectivity to C2+ hydrocarbons over m-ZrO2 or t-ZrO2 as well as the proximity of the ZrO2 sample and HZSM-5 greatly affected the further aromatization in converting syngas into aromatics.

2018 ◽  
Vol 232 (3) ◽  
pp. 409-430 ◽  
Author(s):  
Sarah K. Sihvonen ◽  
Kelly A. Murphy ◽  
Nancy M. Washton ◽  
Muhammad Bilal Altaf ◽  
Karl T. Mueller ◽  
...  

AbstractMineral dust aerosol participates in heterogeneous chemistry in the atmosphere. In particular, the hydroxyl groups on the surface of aluminosilicate clay minerals are important for heterogeneous atmospheric processes. These functional groups may be altered by acidic processing during atmospheric transport. In this study, we exposed kaolinite (KGa-1b) and montmorillonite (STx-1b) to aqueous sulfuric acid and then rinsed the soluble reactants and products off in order to explore changes to functional groups on the mineral surface. To quantify the changes due to acid treatment of edge hydroxyl groups, we use19F magic angle spinning nuclear magnetic resonance spectroscopy and a probe molecule, 3,3,3-trifluoropropyldimethylchlorosilane. We find that the edge hydroxyl groups (OH) increase in both number and density with acid treatment. Chemical reactions in the atmosphere may be impacted by the increase in OH at the mineral edge.


1991 ◽  
Vol 6 (3) ◽  
pp. 592-601 ◽  
Author(s):  
S. Prabakar ◽  
K.J. Rao ◽  
C.N.R. Rao

Gels of various composition containing SiO2, Al2O3, and P2O5 have been investigated by employing high resolution magic-angle-spinning (MAS) 27Al, 29Si, and 31P NMR spectroscopy. Changes occurring in the NMR spectra as the gels are progressively heated have been examined to understand the nature of structural changes occurring during the crystallization of the gels. 27Al resonance is sensitive to changes in the coordination number even when the Al concentration is as low as 1 mol%. As the percentage of Al increases, the hydroxyl groups tend to be located on the Al sites while Si remains as SiO4/2 (Q4). Mullite is the major phase formed at higher temperature in the aluminosilicate gels. In the case of the silicophosphate gels, Si is present in the form of Q4 and Q3 species. There is a change in the coordination of Si from four to six as the gel is heated. The formation of six-coordinated Si is facilitated even at lower temperatures (∼673 K) when the P2O5 content is high. The phosphorus atoms present as orthophosphoric acid units in the xerogels change over to metaphosphate-like units as the gel is heated to higher temperatures. In aluminosilicophosphates, Si is present as Q4 and Q3 species while P is present as metaphosphate units; Al in these gels seems to be inducted into the tetrahedral network positions.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 833 ◽  
Author(s):  
Claudio Del Menezzi ◽  
Siham Amirou ◽  
Antonio Pizzi ◽  
Xuedong Xi ◽  
Luc Delmotte

The reaction of citric acid with wood veneers was studied by Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS 13C NMR) and matrix assisted laser desorption ionization time of flight (MALDI ToF) mass spectrometry. The analysis showed that reactions of citric acid occurred with both lignin and carbohydrate constituents of wood. The reactions occurring are esterifications between the carboxylic acid functions of citric acid and the numerous aromatic and aliphatic hydroxyl groups of the main wood constituents. Reaction of citric acid with glucose as a simple model compound of carbohydrates hydroxyl groups also yielded reactions leading to linear and branched oligomers by esterification. The result indicate that the reactions of esterification are accompanied in parallel by some internal rearrangements of lignin. The applied results on bonding wide flat wood surfaces such as veneers to obtain LVL panels yielded excellent strength results even if the conditions of pressing were more drastic than what is usual for this application. The applied bonding results have shown that citric acid has great potential to be used as a bio-binder for wood veneers.


Author(s):  
ASIF EQUBAL ◽  
Kan Tagami ◽  
Songi Han

In this paper, we report on an entirely novel way of improving the MAS-DNP efficiency by shaped μw pulse train irradiation for fast and broad-banded (FAB) saturation of the electron spin resonance. FAB-DNP achieved with Arbitrary Wave Generated shaped μw pulse trains facilitates effective and selective saturation of a defined fraction of the total electron spins, and provides superior control over the DNP efficiency under MAS. Experimental and quantum-mechanics based numerically simulated results together demonstrate that FAB-DNP significantly outperforms CW-DNP when the EPR-line of PAs is broadened by conformational distribution and exchange coupling. We demonstrate that the maximum benefit of FAB DNP is achieved when the electron spin-lattice relaxation is fast relative to the MAS frequency, i.e. at higher temperatures and/or when employing metals as PAs. Calculations predict that under short T<sub>1e </sub>conditions AWG-DNP can achieve as much as ~4-fold greater enhancement compared to CW-DNP.


Sign in / Sign up

Export Citation Format

Share Document