scholarly journals Magnesium Effect in K/Co-Mg-Mn-Al Mixed Oxide Catalyst for Direct NO Decomposition

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 931
Author(s):  
Kateřina Karásková ◽  
Kateřina Pacultová ◽  
Anna Klegova ◽  
Dagmar Fridrichová ◽  
Marta Valášková ◽  
...  

Emission of nitric oxide represents a serious environmental problem since it contributes to the formation of acid rain and photochemical smog. Potassium-modified Co-Mn-Al mixed oxide is an effective catalyst for NO decomposition. However, there are problems related to the thermal instability of potassium species and a high content of toxic and expensive cobalt. The reported research aimed to determine whether these shortcomings can be overcome by replacing cobalt with magnesium. Therefore, a series of Co-Mg-Mn-Al mixed oxides with different Co/Mg molar ratio and promoted by various content of potassium was investigated. The catalysts were thoroughly characterized by atomic absorption spectroscopy (AAS), temperature-programmed reduction by hydrogen (TPR-H2), temperature-programmed desorption of CO2 (TPD-CO2), X-ray powder diffraction (XRD), N2 physisorption, species-resolved thermal alkali desorption (SR-TAD), and tested in direct NO decomposition with and without the addition of oxygen and water vapor. Partial substitution of magnesium for cobalt did not cause an activity decrease when the optimal molar ratio of K/Co on the normalized surface area was maintained; it means that the portion of expensive and toxic cobalt can be successfully replaced by magnesium without any decrease in catalytic activity.

2020 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Said Arhzaf ◽  
Mohammed Naciri Bennani ◽  
Sadik Abouarnadasse ◽  
Hamid Ziyat ◽  
Omar Qabaqous

<p>The fundamental character of the Mg-Al mixed oxide (Mg<sub>n</sub>(Al)O), derived from the Mg-Al hydrotalcite (Mg<sub>n</sub>Al-CO<sub>3</sub>-HT), where n corresponds to the Mg/Al molar ratio (n: 2, 2.5, 3, 3.5 and 4), was studied by using the adsorption of phenol as a probe acid molecule. The hydrotalcite precursors were prepared by the coprecipitation method. Their derived mixed oxides were obtained by thermal treatment at 450°C in a flow of air. The resulting solids were characterized by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric and differential thermal analysis             (TG-DTA), nitrogen physisorption (BET) and phenol chemisorption. The phenol adsorption followed by UV-Visible spectrophotometry shows that the basicity increases with the Mg/Al molar ratio, such that maximum quantity of phenol adsorbed (Q<sub>ads</sub> = 0.54 mmol/g <sub>cat</sub>) was obtained with the mixed oxide derived from the Mg-Al hydrotalcite of Mg/Al molar ratio equal to 3.5.</p>


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 592 ◽  
Author(s):  
Květa Jirátová ◽  
Kateřina Pacultová ◽  
Jana Balabánová ◽  
Kateřina Karásková ◽  
Anna Klegová ◽  
...  

Direct decomposition of nitric oxide (NO) proceeds over Co–Mn–Al mixed oxides promoted by potassium. In this study, answers to the following questions have been searched: Do the properties of the K-promoted Co–Mn–Al catalysts prepared by different methods differ from each other? The K-precipitated Co–Mn–Al oxide catalysts were prepared by the precipitation of metal nitrates with a solution of K2CO3/KOH, followed by the washing of the precipitate to different degrees of residual K amounts, and by cthe alcination of the precursors at 500 °C. The properties of the prepared catalysts were compared with those of the best catalyst prepared by the K-impregnation of a wet cake of Co–Mn–Al oxide precursors. The solids were characterized by chemical analysis, DTG, XRD, N2 physisorption, FTIR, temperature programmed reduction (H2-TPR), temperature programmed CO2 desorption (CO2-TPD), X-ray photoelectron spectrometry (XPS), and the species-resolved thermal alkali desorption method (SR-TAD). The washing of the K-precipitated cake resulted in decreasing the K amount in the solid, which affected the basicity, reducibility, and non-linearly catalytic activity in NO decomposition. The highest activity was found at ca 8 wt.% of K, while that of the best K-impregnated wet cake catalyst was at about 2 wt.% of K. The optimization of the cake washing conditions led to a higher catalytic activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Mohammed H. Al-Hazmi ◽  
Taiwo Odedairo ◽  
Adel S. Al-Dossari ◽  
YongMan Choi

The catalytic performance of MoVMnW mixed oxides was investigated in the oxidative dehydrogenation of ethane at three different reaction temperatures (235, 255, and 275°C) using oxygen as an oxidant. The catalysts were characterized by using X-ray diffraction, temperature-programmed reduction, and scanning electron microscopy. The MoVMnW mixed oxide catalyst showed the 70–90% of ethylene selectivity at the reaction temperatures. However, a significant decrease in the selectivity of ethylene was observed by increasing the reaction temperature from 235°C to 275°C.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1094 ◽  
Author(s):  
Katarzyna Antoniak-Jurak ◽  
Paweł Kowalik ◽  
Kamila Michalska ◽  
Wiesław Próchniak ◽  
Robert Bicki

A set of ex-ZnAl-LDHs catalysts with a molar ratio of Zn/Al in the range of 0.3–1.0 was prepared using co-precipitation and thermal treatment. The samples were characterized using various methods, including X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy FT-IR, N2 adsorption, Temperature-programmed desorption of CO2 (TPD-CO2) as well as Scanning electron microscopy (SEM-EDS). Catalyst activity and long-term stability measurements were carried out in a high-temperature water–gas shift (HT-WGS) reaction. Mixed oxide catalysts with various Zn/Al molar ratios decorated with potassium showed high activity in the HT-WGS reaction within the temperature range of 330–400 °C. The highest activity was found for the Zn/Al molar ratio of 0.5 corresponding to spinel stoichiometry. However, the catalyst with a stoichiometric spinel molar ratio of Zn/Al (ZnAl_0.5_K) revealed a higher tendency for surface migration and/or vaporization of potassium during overheating at 450 °C. The correlation of the activity results and TPD-CO2 data show that medium basic sites enhance the progress of the HT-WGS reaction.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 561 ◽  
Author(s):  
Torin C. Peck ◽  
Charles A. Roberts ◽  
Gunugunuri K. Reddy

While the promotional effect of potassium on Co3O4 NO decomposition catalytic performance is established in the literature, it remains unknown if K is also a promoter of NO decomposition over similar simple first-row transition metal spinels like Mn3O4 and Fe3O4. Thus, potassium was impregnated (0.9–3.0 wt.%) on Co3O4, Mn3O4, and Fe3O4 and evaluated for NO decomposition reactivity from 400–650 °C. The activity of Co3O4 was strongly dependent on the amount of potassium present, with a maximum of ~0.18 [(µmol NO to N2) g−1 s−1] at 0.9 wt.% K. Without potassium, Fe3O4 exhibited deactivation with time-on-stream due to a non-catalytic chemical reaction with NO forming α-Fe2O3 (hematite), which is inactive for NO decomposition. Potassium addition led to some stabilization of Fe3O4, however, γ-Fe2O3 (maghemite) and a potassium–iron mixed oxide were also formed, and catalytic activity was only observed at 650 °C and was ~50× lower than 0.9 wt.% K on Co3O4. The addition of K to Mn3O4 led to formation of potassium–manganese mixed oxide phases, which became more prevalent after reaction and were nearly inactive for NO decomposition. Characterization of fresh and spent catalysts by scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), in situ NO adsorption Fourier transform infrared spectroscopy, temperature programmed desorption techniques, X-ray powder diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) revealed the unique potassium promotion of Co3O4 for NO decomposition arises not only from modification of the interaction of the catalyst surface with NOx (increased potassium-nitrite formation), but also from an improved ability to desorb oxygen as product O2 while maintaining the integrity and purity of the spinel phase.


2020 ◽  
Vol 15 (2) ◽  
pp. 490-500
Author(s):  
Neha Neha ◽  
Ram Prasad ◽  
Satya Vir Singh

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 BCREC Group. All rights reserved 


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1771 ◽  
Author(s):  
Stefan Neatu ◽  
Mihaela M. Trandafir ◽  
Adelina Stănoiu ◽  
Ovidiu G. Florea ◽  
Cristian E. Simion ◽  
...  

This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium–manganese mixed oxides, which were prepared by three different methods (coprecipitation, impregnation and citrate-based sol-gel method) followed by calcination at 500 °C. The physicochemical properties of the synthesized materials were investigated by various characterization techniques, namely: nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and H2–temperature programmed reduction (TPR). This experimental study demonstrated that the role of the catalytic surface is much more important than the bulk one. Indeed, the incipient impregnation of CeO2–MnOx catalyst, supported on an optimized amount of 4 wt.% La2O3–Al2O3, provided the best results of the catalytic combustion of methane on our catalytic micro-convertors. This is mainly due to: (i) the highest pore size dimensions according to the Brunauer-Emmett-Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H2–TPR and therefore more reactive oxygen species.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 593 ◽  
Author(s):  
Pacultová ◽  
Bílková ◽  
Klegova ◽  
Karásková ◽  
Fridrichová ◽  
...  

Fundamental research on direct NO decomposition is still needed for the design of a sufficiently active, stable and selective catalyst. Co-based mixed oxides promoted by alkali metals are promising catalysts for direct NO decomposition, but which parameters play the key role in NO decomposition over mixed oxide catalysts? How do applied preparation conditions affect the obtained catalyst’s properties?


2017 ◽  
Vol 42 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Yubo Ma ◽  
Zhixian Gao ◽  
Wumanjiang Eli

Rh catalysts supported on Fe2O3, Co3O4 and Fe2O3–Co3O4 mixed oxide were prepared by the co-precipitation method. The effect of the support on the performance of the Rh catalysts for the hydroformylation of dicyclopentadiene was investigated using X-ray photoelectron spectroscopy, H2-temperature-programmed reduction, H2-temperature-programmed desorption and Brunauer–Emmett–Teller analysis techniques. The results indicated that the Fe2O3–Co3O4 supported catalyst had a higher dispersion of Rh and thus more Rh+ sites. As a result, the Fe2O3–Co3O4 supported Rh catalyst exhibited higher activity compared with counterparts supported on Fe2O3 and Co3O4.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 62 ◽  
Author(s):  
Gunugunuri K. Reddy ◽  
Torin C. Peck ◽  
Charles A. Roberts

Direct decomposition of NO into N2 and O2 (2NO→N2 + O2) is recognized as the “ideal” reaction for NOx removal because it needs no reductant. It was reported that the spinel Co3O4 is one of the most active single-element oxide catalysts for NO decomposition at higher reaction temperatures, however, activity remains low below 650 °C. The present study aims to investigate new promoters for Co3O4, specifically PdO vs. PtO. Interestingly, the PdO promoter effect on Co3O4 was much greater than the PtO effect, yielding a 4 times higher activity for direct NO decomposition at 650 °C. Also, Co3O4 catalysts with the PdO promoter exhibit higher selectivity to N2 compared to PtO/Co3O4 catalysts. Several characterization measurements, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and in situ FT-IR, were performed to understand the effect of PdO vs. PtO on the properties of Co3O4. Structural and surface analysis measurements show that impregnation of PdO on Co3O4 leads to a greater ease of reduction of the catalysts and an increased thermal stability of surface adsorbed NOx species, which contribute to promotion of direct NO decomposition activity. In contrast, rather than remaining solely as a surface species, PtO enters the Co3O4 structure, and it promotes neither redox properties nor NO adsorption properties of Co3O4, resulting in a diminished promotional effect compared to PdO.


Sign in / Sign up

Export Citation Format

Share Document