scholarly journals Heterogeneous Catalytic Ozonation of Phenol by a Novel Binary Catalyst of Fe-Ni/MAC

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1123
Author(s):  
Yunlong Yang ◽  
Xianwei Shi ◽  
Min Zhao ◽  
Shuyi Chu ◽  
Jibo Xiao

Iron-nickel supported on modified active carbon (Fe-Ni/MAC) was prepared and characterized by XRD, SEM, XPS and EDS, followed by evaluating the practicability of Fe-Ni/MAC in treating real wastewater with a high concentration of phenol. Results showed that the optimal conditions for catalytic ozonation obtained by response surface methodology (RSM) were catalyst 10 g/L, ozone 68 mg/L, pH 9 and reaction time 90 min. Fe-Ni alloy and NiFe2O4 were demonstrated to be the dominant active species involved in catalytic reaction. The Fe-Ni/MAC catalyst can be reused six times with a satisfactory performance and little leaching of metal ions. Although some radicals like ·OH and ·O2− functioned well, singlet oxygen (1O2) was regarded as the most important radical in the Fe-Ni/MAC process. Most noticeably, the fluorescence excitation emission matrices (EEMs) certified that as much as 1243 mg/L phenol in the real wastewater was completely degraded, which made Fe-Ni/MAC a fairly practical catalyst.

1996 ◽  
Vol 34 (10) ◽  
pp. 25-33 ◽  
Author(s):  
Cheng Jiayang ◽  
Makram T. Suidan ◽  
Albert D. Venosa

Abiotic reduction of 2,4-dinitrotoluene (DNT) in the presence of sulfide minerals has been investigated under anoxic conditions at 35°C. 2,4-DNT was abiotically reduced to 4-amino-2-nitrotoluene (4-A-2-NT) and 2-amino-4-nitrotoluene (2-A-4-NT) in the presence of high concentration of sulfide (0.84 mM). No abiotic reduction of 2,4-DNT was observed in the presence of low sulfide concentration (0.42 mM). The rate and the extent of the abiotic reduction of 2,4-DNT were increased with an increase in sulfide concentration. Sulfide served as an electron donor for the reduction of 2,4-DNT. The 2-nitro group was preferentially reduced, making the 2-A-4-NT:4-A-2-NT ratio in the final products 2:1. The addition of iron, nickel, and cobalt minerals significantly enhanced the abiotic reduction. The FeS, NiS, and CoS solids formed in the serum bottles catalyzed the reduction of 2,4-DNT preferentially to 4-A-2-NT. MnS and CuS solids also catalyzed the reduction of 2,4-DNT to 4-A-2-NT, but did not change the overall reduction of 2,4-DNT. However, the presence of calcium, zinc, and magnesium minerals impeded 2,4-DNT reduction. The calcium, zinc, and magnesium ions have a high affinity to sulfide, inactivating sulfide as an electron donor for the chemical reduction of 2,4-DNT.


2021 ◽  
Vol 9 (13) ◽  
pp. 8341-8349
Author(s):  
Jiahe Zang ◽  
Shaofei Wang ◽  
Rongrun Hu ◽  
Han Man ◽  
Jichao Zhang ◽  
...  

A bimetallic oxide Ni3(VO4)2 has been synthesized to catalyze the hydrogen storage reaction of MgH2. The formation of the Mg2Ni alloy and the kinetic modulation of V results in a dehydrogenation temperature of 210 °C. The NiV2O4 intermediate active species is also detected.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guhankumar Ponnusamy ◽  
Hajar Farzaneh ◽  
Yongfeng Tong ◽  
Jenny Lawler ◽  
Zhaoyang Liu ◽  
...  

AbstractHeterogeneous catalytic ozonation is an effective approach to degrade refractory organic pollutants in water. However, ozonation catalysts with combined merits of high activity, good reusability and low cost for practical industrial applications are still rare. This study aims to develop an efficient, stable and economic ozonation catalyst for the degradation of Ibuprofen, a pharmaceutical compound frequently detected as a refractory pollutant in treated wastewaters. The novel three-dimensional network-structured catalyst, comprising of δ-MnO2 nanosheets grown on woven carbon microfibers (MnO2 nanosheets/carbon microfiber), was synthesized via a facile hydrothermal approach. Catalytic ozonation performance of Ibuprofen removal in water using the new catalyst proves a significant enhancement, where Ibuprofen removal efficiency of close to 90% was achieved with a catalyst loading of 1% (w/v). In contrast, conventional ozonation was only able to achieve 65% removal efficiency under the same operating condition. The enhanced performance with the new catalyst could be attributed to its significantly increased available surface active sites and improved mass transfer of reaction media, as a result of the special surface and structure properties of this new three-dimensional network-structured catalyst. Moreover, the new catalyst displays excellent stability and reusability for ibuprofen degradation over successive reaction cycles. The facile synthesis method and low-cost materials render the new catalyst high potential for industrial scaling up. With the combined advantages of high efficiency, high stability, and low cost, this study sheds new light for industrial applications of ozonation catalysts.


2017 ◽  
Vol 89 ◽  
pp. 81-85 ◽  
Author(s):  
Yue Liu ◽  
Shiyuan Wang ◽  
Weijin Gong ◽  
Zhonglin Chen ◽  
Haifang Liu ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (25) ◽  
pp. 20858-20866 ◽  
Author(s):  
Alireza Khataee ◽  
Tannaz Sadeghi Rad ◽  
Mehrangiz Fathinia ◽  
Sang Woo Joo

This study investigates nalidixic acid degradationviaheterogeneous catalytic ozonation using clinoptilolite nanorods (CNs) as a novel nanocatalyst.


2019 ◽  
Vol 369 ◽  
pp. 100-108 ◽  
Author(s):  
Xiumei Sun ◽  
Changyong Wu ◽  
Yuexi Zhou ◽  
Wei Han

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 241 ◽  
Author(s):  
Bing Wang ◽  
Huan Zhang ◽  
Feifei Wang ◽  
Xingaoyuan Xiong ◽  
Kun Tian ◽  
...  

Catalytic ozonation is believed to belong to advanced oxidation processes (AOPs). Over the past decades, heterogeneous catalytic ozonation has received remarkable attention as an effective process for the degradation of refractory organics in wastewater, which can overcome some disadvantages of ozonation alone. Metal oxides, metals, and metal oxides supported on oxides, minerals modified with metals, and carbon materials are widely used as catalysts in heterogeneous catalytic ozonation processes due to their excellent catalytic ability. An understanding of the application can provide theoretical support for selecting suitable catalysts aimed at different kinds of wastewater to obtain higher pollutant removal efficiency. Therefore, the main objective of this review article is to provide a summary of the accomplishments concerning catalytic ozonation to point to the major directions for choosing the catalysts in catalytic ozonation in the future.


Sign in / Sign up

Export Citation Format

Share Document