scholarly journals Tafel Slope Analyses for Homogeneous Catalytic Reactions

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87
Author(s):  
Qiushi Yin ◽  
Zihao Xu ◽  
Tianquan Lian ◽  
Djamaladdin G. Musaev ◽  
Craig L. Hill ◽  
...  

Tafel analysis of electrocatalysts is essential in their characterization. This paper analyzes the application of Tafel-like analysis to the four-electron nonelectrochemical oxidation of water by the stoichiometric homogeneous 1-electron oxidant [Ru(bpy)3]3+ to dioxygen catalyzed by homogeneous catalysts, [Ru4O4(OH)2(H2O)4(γ-SiW10O36)2]10− (Ru4POM) and [Co4(H2O)2(PW9O34)2]10– (Co4POM). These complexes have slow electron exchange rates with electrodes due to the Frumkin effect, which precludes the use of known electrochemical methods to obtain Tafel plots at ionic strengths lower than 0.5 M. The application of an electron transfer catalyst, [Ru(bpy)3]3+/2+, increases the rates between the Ru4POM and electrode, but a traditional Tafel analysis of such a complex system is precluded due to a lack of appropriate theoretical models for 4-electron processes. Here, we develop a theoretical framework and experimental procedures for a Tafel-like analysis of Ru4POM and Co4POM, using a stoichiometric molecular oxidant [Ru(bpy)3]3+. The dependence of turnover frequency (TOF) as a function of electrochemical solution potential created by the [Ru(bpy)3]3+/[Ru(bpy)3]2+ redox couple (an analog of the Tafel plot) was obtained from kinetics data and interpreted based on the suggested reaction mechanism.

1979 ◽  
Vol 44 (5) ◽  
pp. 1540-1551 ◽  
Author(s):  
Jaro Komenda ◽  
Jiří Huzlík

Compounds of the type of 2-(4'-nitrobenzoyl)methylene-3-ethylbenzothiazoline (I) and 2-bis-(p-nitrobenzoyl)methylene-3-ethylbenzothiazoline (II) were studied polarographically and by ESR spectroscopy to obtain informations about their electrochemical and follow-up reactions and their conformation. Whereas with compounds of the type I the conjugation in their molecules is preserved, with type II the coplanarity of the molecules is disturbed, which is manifested in the values of the splitting constants of the ESR spectra and a slow electron transfer between both nitrophenyl substituents. These conclusions are supported by NMR spectroscopic studies.


Author(s):  
Hanna Lyle ◽  
Suryansh Singh ◽  
Michael Paolino ◽  
Ilya Vinogradov ◽  
Tanja Cuk

The conversion of diffusive forms of energy (electrical and light) into short, compact chemical bonds by catalytic reactions regularly involves moving a carrier from an environment that favors delocalization to one that favors localization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Krishnaveni ◽  
V. Ganesh

AbstractModern day hospital treatments aim at developing electrochemical biosensors for early diagnosis of diseases using unconventional human bio-fluids like sweat and saliva by monitoring the electron transfer reactions of target analytes. Such kinds of health care diagnostics primarily avoid the usage of human blood and urine samples. In this context, here we have investigated the electron transfer reaction of a well-known and commonly used redox probe namely, potassium ferro/ferri cyanide by employing artificially simulated bio-mimics of human sweat and saliva as unconventional electrolytes. Typically, electron transfer characteristics of the redox couple, [Fe(CN)6]3−/4− are investigated using electrochemical techniques like cyclic voltammetry and electrochemical impedance spectroscopy. Many different kinetic parameters are determined and compared with the conventional system. In addition, such electron transfer reactions have also been studied using a lyotropic liquid crystalline phase comprising of Triton X-100 and water in which the aqueous phase is replaced with either human sweat or saliva bio-mimics. From these studies, we find out the electron transfer reaction of [Fe(CN)6]3−/4− redox couple is completely diffusion controlled on both Au and Pt disc shaped electrodes in presence of sweat and saliva bio-mimic solutions. Moreover, the reaction is partially blocked by the presence of lyotropic liquid crystalline phase consisting of sweat and saliva bio-mimics indicating the predominant charge transfer controlled process for the redox probe. However, the rate constant values associated with the electron transfer reaction are drastically reduced in presence of liquid crystalline phase. These studies are essentially carried out to assess the effect of sweat and saliva on the electrochemistry of Fe2+/3+ redox couple.


Author(s):  
M. Czapla ◽  
A. Borek ◽  
M. Sarewicz ◽  
A. Osyczka

1992 ◽  
Vol 70 (6) ◽  
pp. 1833-1837 ◽  
Author(s):  
Yan Xiang ◽  
Gilles Villemure

The cyclic voltammograms of tris (2,2′-bipyridyl) iron(II) ([Fe(bpy)3]2+) adsorbed in clay-modified electrodes made from a range of different smectites were recorded. In all cases, at low scan speed (1 mV/s), the initial anodic peak current was much larger than the initial cathodic peak current. Partial reduction of the clay structural iron further increased the initial anodic to cathodic current ratio, suggesting that the discrepancy between the charge transferred in the anodic and cathodic scans was due to a slow electron transfer between the clay structural Fe(II) and the oxidized bipyridyl cations. However, no clear quantitative relation was found between the measured FeO contents of the different clays and the observed excess anodic currents. In fact, of all the clays tested only one, montmorillonite SWy-1, contained enough Fe(II) for it to account for all of the excess anodic charge transferred in the initial scan.


Sign in / Sign up

Export Citation Format

Share Document