slow electron
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 27)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Author(s):  
A. William Rutherford ◽  
Andrea Fantuzzi ◽  
Dario Piano ◽  
Patrycja Haniewicz ◽  
Domenica Farci ◽  
...  

In thylakoid membranes, Photosystem II monomers from the stromal lamellae contain the subunits PsbS and Psb27 (PSIIm-S/27), while Photosystem II monomers from granal regions (PSIIm) lack these subunits. Here, we have isolated and characterised these two types of Photosystem II complexes. The PSIIm-S/27 showed enhanced fluorescence, the near-absence of oxygen evolution, as well as limited and slow electron transfer from QA to QB compared to the near-normal activities in the granal PSIIm. However, when bicarbonate was added to the PSIIm-S/27, water splitting and QA to QB electron transfer rates were comparable to those in granal PSIIm. The findings suggest that the binding of PsbS and/or Psb27 inhibits forward electron transfer and lowers the binding affinity for the bicarbonate. This can be rationalized in terms of the recently discovered photoprotection role played by bicarbonate binding via the redox tuning of the QA/QA?- couple, which controls the charge recombination route, and this limits chlorophyll triplet mediated 1O2 formation (Brinkert K et al. (2016) Proc Natl Acad Sci U S A. 113(43):12144-12149). These findings suggest that PSIIm-S/27 is an intermediate in the assembly of PSII in which PsbS and/or Psb27 restrict PSII activity while in transit, by using a bicarbonate-mediated switch and protective mechanism.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 105
Author(s):  
Miron Ya. Amusia ◽  
Arkadiy S. Baltenkov ◽  
Igor Woiciechowski

We have studied the angular time delay in slow-electron elastic scattering by spherical targets as well as the average time delay of electrons in this process. It is demonstrated how the angular time delay is connected to the Eisenbud–Wigner–Smith (EWS) time delay. The specific features of both angular and energy dependencies of these time delays are discussed in detail. The potentialities of the derived general formulas are illustrated by the numerical calculations of the time delays of slow electrons in the potential fields of both absolutely hard-sphere and delta-shell potential well of the same radius. The conducted studies shed more light on the specific features of these time delays.


Author(s):  
Miron Ya. Amusia ◽  
Arkadiy S Baltenkov

Abstract In this paper we calculate the elastic scattering cross sections of slow electron by carbon nanotubes. The corresponding electron-nanotube interaction is substituted by a zero-thickness cylindrical potential that neglects the atomic structure of real nanotubes, thus limiting the range of applicability of our approach to sufficiently low incoming electron energies. The strength of the potential is chosen the same that was used in describing scattering of electrons by fullerene C60. We present results for total and partial electron scattering cross sections as well as respective angular distributions, all with account of five lowest angular momenta contributions. In the calculations we assumed that the incoming electron moves perpendicular to the nanotube axis, since along the axis the incoming electron moves freely.


2021 ◽  
Author(s):  
Sergey Kamaletdinov ◽  
Ivan Vasko ◽  
Egor Yushkov ◽  
Anton Artemyev ◽  
Rachel Wang

<p>Slow electron holes, that are electrostatic solitary waves propagating with velocities comparable to the ion thermal velocity, can contribute to plasma heating and provide an anomalous resistivity in various space plasma systems. In addition, the analysis of electron holes allows revealing instabilities operating on time scales not resolved by plasma instruments. We present experimental analysis of more than 100 slow electron holes in the Earth’s bow shock and more than 1000 slow electron holes in the Earth’s nightside magnetosphere. We show that in both regions, the electron holes have similar parameters. The spatial scales are in the range from 1 to 10 Debye lengths, amplitudes of the electrostatic potential are typically below 0.1 of local electron temperature, velocities in the plasma rest frame are of the order of local ion-acoustic velocity. We show that in both regions the electron holes are most likely produced by Buneman-type instabilities. We develop theoretical models of the electron holes and compare them to MMS observations. The lifetime and the transverse instability of the electron holes are discussed.</p><p>This work was supported by the Russian Scientific Foundation, Project No. 19–<span>12-00313</span></p>


2021 ◽  
Vol 34 (3) ◽  
pp. 557-569
Author(s):  
M. Nazir ◽  
R. Khattak ◽  
M. S. Khan ◽  
I. I. Naqvi

We synthesized the novel histidine complex of uranium(IV). A 1:3 mole ratio was found between metal and ligand by the mole ratio method, while –NH2 and –COO– groups of histidine behave as coordinating sites. The IR spectra confirmed the lone pair donating or coordinating sites. The elemental analysis confirmed the stoichiometry. The bathochromic shift with an increase in the optical density in the UV-Visible range indicated that the compound and its central metal ion hold uniform electronic charge distribution. The electrochemical results indicated a quasi-reversible (neither completely reversible nor completely irreversible) oxidation of the complex to its uranium(V) product at the platinum working electrode. The quasi-reversible process shows a comparatively slow electron transfer (ET) rate with the heterogeneous electron transfer rate constant ‘ks’ (3.4 ×  10–4 cm s-1) at 50 mV s-1 and 305 ± 0.5 K. The kinetics such as diffusion and charge transfer lead the reaction with an ECE (electrochemical–chemical–electrochemical) mechanism. The thermodynamic parameters of activation such as ΔH*; 4.257 kJ mol–1, ΔS*; -2.519 × 10–3 J mol–1 K–1 and ΔG* 4.26 kJ mol–1 helped to propose an associative mechanism of the electron transfer at the platinum working electrode.                     KEY WORDS: Uranium, Histidine, Spectroscopy, Electrochemistry, Kinetics   Bull. Chem. Soc. Ethiop. 2020, 34(3), 557-569.  DOI: https://dx.doi.org/10.4314/bcse.v34i3.11


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87
Author(s):  
Qiushi Yin ◽  
Zihao Xu ◽  
Tianquan Lian ◽  
Djamaladdin G. Musaev ◽  
Craig L. Hill ◽  
...  

Tafel analysis of electrocatalysts is essential in their characterization. This paper analyzes the application of Tafel-like analysis to the four-electron nonelectrochemical oxidation of water by the stoichiometric homogeneous 1-electron oxidant [Ru(bpy)3]3+ to dioxygen catalyzed by homogeneous catalysts, [Ru4O4(OH)2(H2O)4(γ-SiW10O36)2]10− (Ru4POM) and [Co4(H2O)2(PW9O34)2]10– (Co4POM). These complexes have slow electron exchange rates with electrodes due to the Frumkin effect, which precludes the use of known electrochemical methods to obtain Tafel plots at ionic strengths lower than 0.5 M. The application of an electron transfer catalyst, [Ru(bpy)3]3+/2+, increases the rates between the Ru4POM and electrode, but a traditional Tafel analysis of such a complex system is precluded due to a lack of appropriate theoretical models for 4-electron processes. Here, we develop a theoretical framework and experimental procedures for a Tafel-like analysis of Ru4POM and Co4POM, using a stoichiometric molecular oxidant [Ru(bpy)3]3+. The dependence of turnover frequency (TOF) as a function of electrochemical solution potential created by the [Ru(bpy)3]3+/[Ru(bpy)3]2+ redox couple (an analog of the Tafel plot) was obtained from kinetics data and interpreted based on the suggested reaction mechanism.


2021 ◽  
Vol 264 ◽  
pp. 05037
Author(s):  
Ilkhom Bekpulatov ◽  
Ilkhom Turapov ◽  
Sevara Abraeva ◽  
Jakhongir Normuminov

Using the methods of electron spectroscopy and slow electron diffraction, we studied the processes of the formation of nanosized metal silicide films in the near-surface region of Si (111) and Si (100) during low-energy implantation of Ba ions and alkaline elements. The optimal technological modes of ion implantation and subsequent annealing for the formation of thin nanoscale films of silicides were determined. The type of surface superstructures of thin silicide films has been established.


2021 ◽  
Vol 23 (7) ◽  
pp. 4317-4325
Author(s):  
Andriy Pysanenko ◽  
Kateryna Grygoryeva ◽  
Jaroslav Kočišek ◽  
Ragesh Kumar T. P. ◽  
Juraj Fedor ◽  
...  

Fragmentation of pyruvic acid upon slow electron attachment is investigated in relevance to its formation on ice grains in the interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document