scholarly journals A Facile Synthesis of Bi2O3/CoFe2O4 Nanocomposite with Improved Synergistic Photocatalytic Potential for Dye Degradation

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1180
Author(s):  
Abdul Basit Naveed ◽  
Fakhira Riaz ◽  
Azhar Mahmood ◽  
Ammara Shahid ◽  
Saman Aqeel

Semiconductor-based photocatalysis is a probable approach to overcoming many pollution problems and eradicating toxic organic materials from wastewater. This research endeavor aimed to explore the synergistic potential of different semiconductor nanocomposites for photocatalytic degradation of organic pollutants in contaminated water. A facile hydrothermal approach was employed to synthesize bismuth oxide and cobalt ferrite nanoparticles from their precursors—bismuth nitrate pentahydrate, ferric chloride hexahydrate and cobalt chloride hexahydrate—with various concentrations and conditions to optimize the product. Subsequently, nanocomposites of bismuth oxide and cobalt ferrite were prepared by solid-state mixing in varying concentrations followed by calcination. UV/visible diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy and elemental dispersive X-ray spectroscopic techniques have corroborated the successful synthesis of nanocomposites. The energy gaps of bismuth oxide and cobalt ferrite nanocomposites were computed in the range of 1.58–1.62 eV by Tauc plots. These nanocomposite materials were ascertained for photocatalytic potential to degrade methyl orange organic dye in water. A nanocomposite with equiquantic proportions has shown the best photocatalytic degradation activity, which may be attributed to the type-II band configuration and a synergistic effect, because Bi2O3 acts as an electron sink. This synergism has reduced the cogent band gap, hindered electron hole recombination and increased electron hole availabilities for photodegradation reactions, thus ensuing an efficient photodegradation co-work of Bi2O3/CoFe2O4 nanocomposites.

2011 ◽  
Vol 335-336 ◽  
pp. 1385-1390 ◽  
Author(s):  
Shuo Wiei Zhao ◽  
Hui Xu ◽  
Hua Ming Li ◽  
Yuan Guo Xu

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.


2018 ◽  
Vol 32 (17) ◽  
pp. 1850185 ◽  
Author(s):  
Yun-Hui Si ◽  
Yu Xia ◽  
Ya-Yun Li ◽  
Shao-Ke Shang ◽  
Xin-Bo Xiong ◽  
...  

A series of BiFeO3 and BiFe[Formula: see text]Mn[Formula: see text]O3 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by a hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS) and UV–Vis diffuse reflectance spectroscopy, and their photocatalytic activity was studied by photocatalytic degradation of methylene blue in aqueous solution under visible light irradiation. The band gap of BiFeO3 was significantly decreased from 2.26 eV to 1.90 eV with the doping of Mn. Furthermore, the 6% Mn-doped BiFeO3 photocatalyst exhibited the best activity with a degradation rate of 94% after irradiation for 100 min. The enhanced photocatalytic activity with Mn doping could be attributed to the enhanced optical absorption, increment of surface reactive sites and reduction of electron–hole recombination. Our results may be conducive to design more efficient photocatalysts responsive to visible light among narrow band gap semiconductors.


2012 ◽  
Vol 583 ◽  
pp. 86-90 ◽  
Author(s):  
Hai Bin Li ◽  
Xin Yong Li ◽  
Yan De Song ◽  
Shu Guang Chen ◽  
Ying Wang ◽  
...  

TiO2nanotubes were prepared via a hydrothermal route. CeO2nanoparticles with diameters around 5nm were loaded onto the surface of TiO2nanotubes via a deposition approach followed by a calcination process. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectroscopy (UV-vis) were applied for the characterization of the as-prepared CeO2/TiO2nanotubes composites. The results show that CeO2particles are highly dispersed on the surface of TiO2nanotubes. The TiO2 nanotubes are modified to response to the visible light due to the combination with CeO2. The CeO2/TiO2nanotubes composites with a CeO2/TiO2atomic ratio of 2.5% show a further improvement on the photocatalytic activity for degradation of Rhodamine B in water. The presence of CeO2improves the light absorption of TiO2nanotubes and inhibits the electron-hole recombination.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Mohanna Zarei ◽  
Jamil Bahrami ◽  
Mohammad Zarei

Abstract Zirconia (ZrO2)-modified graphitic carbon nitride (g-C3N4) nanocomposite was used for effective photodegradation of 4-nitrophenol (4-NP) in water. The ZrO2 nanoparticles, g-C3N4 nanosheets, and ZrO2/g-C3N4 nanocomposite were well characterized by including N2 adsorption, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy, photoelectrochemical measurements, and photoluminescence spectroscopy methods. ZrO2/g-C3N4 nanocomposites were formed at room temperature using sonication and used for effective for photodegradation of 4-NP under irradiation with visible light. The nanocomposite samples resulted in a significant increase in photocatalytic activity compared with single-component samples of g-C3N4. In particular, the ZrO2/g-C3N4 nanocomposite exhibited the significant increase in the photocatalytic activity. The ZrO2/g-C3N4 nanocomposite showed an excellent catalytic activity toward the reduction of 4-NP in aqueous medium. Further, ZrO2/g-C3N4 nanocomposite can be reused several times for photocatalytic degradation as well as for 4-NP adsorption.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 342 ◽  
Author(s):  
Mohammed Ismael ◽  
Michael Wark

Perovskite-type oxides lanthanum ferrite (LaFeO3) photocatalysts were successfully prepared by a facile and cost-effective sol-gel method using La(NO)3 and Fe(NO)3 as metal ion precursors and citric acid as a complexing agent at different calcination temperatures. The properties of the resulting LaFeO3 samples were characterized by powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (IR), transmission electron microscopy (TEM), N2 adsorption/desorption and photoelectrochemical tests. The photoactivity of the LaFeO3 samples was tested by monitoring the photocatalytic degradation of Rhodamine B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation, the highest photocatalytic activity was found for LaFeO3 calcined at 700 °C, which attributed to the relatively highest surface area (10.6 m2/g). In addition, it was found from trapping experiments that the reactive species for degradation were superoxide radical ions (O2−) and holes (h+). Photocurrent measurements and electrochemical impedance spectroscopy (EIS) proved the higher photo-induced charge carrier transfer and separation efficiency of the LaFeO3 sample calcined at 700 °C compared to that that calcined at 900 °C. Band positions of LaFeO3 were estimated using the Mott-Schottky plots, which showed that H2 evolution was not likely.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 254 ◽  
Author(s):  
Yuxiang Yan ◽  
Hua Yang ◽  
Zao Yi ◽  
Ruishan Li ◽  
Xiangxian Wang

Using P25 as the titanium source and based on a hydrothermal route, we have synthesized CaTiO3 nanocuboids (NCs) with the width of 0.3–0.5 μm and length of 0.8–1.1 μm, and systematically investigated their growth process. Au nanoparticles (NPs) of 3–7 nm in size were assembled on the surface of CaTiO3 NCs via a photocatalytic reduction method to achieve excellent Au@CaTiO3 composite photocatalysts. Various techniques were used to characterize the as-prepared samples, including X-ray powder diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Rhodamine B (RhB) in aqueous solution was chosen as the model pollutant to assess the photocatalytic performance of the samples separately under simulated-sunlight, ultraviolet (UV) and visible-light irradiation. Under irradiation of all kinds of light sources, the Au@CaTiO3 composites, particularly the 4.3%Au@CaTiO3 composite, exhibit greatly enhanced photocatalytic performance when compared with bare CaTiO3 NCs. The main roles of Au NPs in the enhanced photocatalytic mechanism of the Au@CaTiO3 composites manifest in the following aspects: (1) Au NPs act as excellent electron sinks to capture the photoexcited electrons in CaTiO3, thus leading to an efficient separation of photoexcited electron/hole pairs in CaTiO3; (2) the electromagnetic field caused by localized surface plasmon resonance (LSPR) of Au NPs could facilitate the generation and separation of electron/hole pairs in CaTiO3; and (3) the LSPR-induced electrons in Au NPs could take part in the photocatalytic reactions.


2021 ◽  
Author(s):  
Rui Zhang ◽  
ziyin chen ◽  
Chen Zhao ◽  
Kunlin Zeng ◽  
Lu Cai ◽  
...  

Abstract A novel binary BiSI/Ag2CO3 photocatalyst with excellent visible light-driven photocatalytic performance was prepared. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and electrochemical impedance spectroscopy (EIS). The photocatalytic activity of the samples were evaluated by photocatalytic degradation of rhodamine B(RhB) under the irradiation of visible light. The results showed that the BiSI improves the photocatalytic activity of BiSI/Ag2CO3. Moreover, when the mass ratio of BiSI in BiSI/Ag2CO3 composites was 40%, the as-prepared BiSI/Ag2CO3 composite exhibited the best photocatalytic activity for degrading RhB. Finally, the possible mechanism for photodegradation over the BiSI/Ag2CO3 composites is also proposed.


2020 ◽  
Vol 9 (3) ◽  
pp. 94-100
Author(s):  
Kim Nguyen Van ◽  
Nga Nguyen Thi Viet ◽  
Tuyen Vo Thi Thanh ◽  
Vien Vo

Composite ZnO/CuO was prepared by direct formation of ZnO from Zn(OOCCH3)2 precursor in the presence of CuO with the assistant of the microwave system. The obtained composite was characterized by X-Ray Diffraction (XRD) and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-vis DRS), which shows that the composite with a bandgap of 3.27 eV contains two components, ZnO and CuO. The photocatalytic activity of ZnO/CuO was assessed by the degradation of methylene blue (MB) in water under visible light, shows that the photocatalytic activity for the ZnO/CuO composite was remarkably improved compared to single ZnO and CuO. This result is attributed to the reduced recombination rate of photogenerated electron-hole pairs by the presence of CuO in the composite, therefore photocatalysis activity increases.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 392 ◽  
Author(s):  
Meng Sun ◽  
Raja Senthil ◽  
Junqing Pan ◽  
Sedahmed Osman ◽  
Abrar Khan

In this work, we have synthesized the rod-on-rod–like α-FeOOH/α-AgVO3 nanocomposite photocatalysts with the different amounts of solvothermally synthesized α-FeOOH nanorods via a simple co-precipitation method. The as-synthesized photocatalysts were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, UV−Visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM), element mapping, high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The observed SEM images show that both α-AgVO3 and α-FeOOH exhibits the rod-shaped morphology with nano size. Furthermore, the photocatalytic activities of the obtained photocatalysts were evaluated towards the degradation of Rhodamine B (RhB) under visible-light irradiation. It is demonstrated that the 3 mg α-FeOOH added to the α-FeOOH/α-AgVO3 nanocomposite exhibited an enhanced photocatalytic performance as compared with the pure α-AgVO3 and α-FeOOH. This significant improvement can be attributed to the increased photo-excited electron-hole pair separation efficiency, large portion of visible-light absorption ability and the reduced recombination of the electron-hole pair. The recycling test revealed that the optimized nanocomposite exhibited good photostability and reusability properties. In addition, the believable photodegradation mechanism of RhB using α-FeOOH/α-AgVO3 nanocomposite is proposed. Hence, the developed α-FeOOH/α-AgVO3 nanocomposite is a promising material for the degradation of organic pollutants in an aqueous environment.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Silija Padikkaparambil ◽  
Binitha Narayanan ◽  
Zahira Yaakob ◽  
Suraja Viswanathan ◽  
Siti Masrinda Tasirin

Nanogold doped TiO2catalysts are synthesized, and their application in the photodegradation of dye pollutants is studied. The materials are characterized using different analytical techniques such as X-ray diffraction, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The results revealed the strong interaction between the metallic gold nanoparticles and the anatase TiO2support. Au doped systems showed very good photoactivity in the degradation of dye pollutants under UV irradiation as well as in sunlight. A simple mechanism is proposed for explaining the excellent photoactivity of the systems. The reusability studies of the photocatalysts exhibited more than 98% degradation of the dye even after 10 repeated cycles.


Sign in / Sign up

Export Citation Format

Share Document