scholarly journals Water Splitting on Multifaceted SrTiO3 Nanocrystals: Computational Study

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1326
Author(s):  
Maksim Sokolov ◽  
Yuri A. Mastrikov ◽  
Guntars Zvejnieks ◽  
Dmitry Bocharov ◽  
Eugene A. Kotomin ◽  
...  

Recent experimental findings suggest that strontium titanate SrTiO3 (STO) photocatalytic activity for water splitting could be improved by creating multifaceted nanoparticles. To understand the underlying mechanisms and energetics, the model for faceted nanoparticles was created. The multifaceted nanoparticles’ surface is considered by us as a combination of flat and “stepped” facets. Ab initio calculations of the adsorption of water and oxygen evolution reaction (OER) intermediates were performed. Our findings suggest that the “slope” part of the step showed a natural similarity to the flat surface, whereas the “ridge” part exhibited significantly different adsorption configurations. On the “slope” region, both molecular and dissociative adsorption modes were possible, whereas on the “ridge”, only dissociative adsorption was observed. Water adsorption energies on the “ridge” ( −1.50 eV) were significantly higher than on the “slope” ( −0.76 eV molecular; −0.83 eV dissociative) or flat surface ( −0.79 eV molecular; −1.09 eV dissociative).

2019 ◽  
Vol 9 (1) ◽  
pp. 199-212 ◽  
Author(s):  
Ling Zhu ◽  
Chunli Liu ◽  
Xiaodong Wen ◽  
Yong-Wang Li ◽  
Haijun Jiao

Water adsorption and dissociation on clean and oxygen pre-covered Ni(111) surfaces have been computed systematically by using density functional theory and ab initio atomistic thermodynamics.


2021 ◽  
Author(s):  
Harsha Bantawal ◽  
Sandhya U. Shenoy ◽  
Denthaje Krishna Bhat

CaTiO3 has attracted enormous interest in the field of photocatalytic dye degradation and water splitting owing to its low cost, excellent physicochemical stability and structural tunability. Herein, we have developed...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giuseppe Giacopelli ◽  
Domenico Tegolo ◽  
Emiliano Spera ◽  
Michele Migliore

AbstractThe brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the corresponding biological system. To solve this problem, we propose to use a new mathematical framework able to use sparse and limited experimental data to quantitatively reproduce the structural connectivity of biological brain networks at cellular level.


2015 ◽  
Vol 3 (36) ◽  
pp. 18622-18635 ◽  
Author(s):  
Susanginee Nayak ◽  
Lagnamayee Mohapatra ◽  
Kulamani Parida

Dispersion of exfoliated CN over the surface of exfoliated LDH composite materials, and its photocatalytic water splitting under visible-light irradiation.


2015 ◽  
Vol 3 (18) ◽  
pp. 10060-10068 ◽  
Author(s):  
Yijun Yang ◽  
Ye Yao ◽  
Liu He ◽  
Yeteng Zhong ◽  
Ying Ma ◽  
...  

Enhanced and stable photocatalytic activity upon water splitting was demonstrated in a series of TiO2–carbon hybrid nanomaterials, which were derived from oleylamine wrapped ultrathin TiO2 nanosheets.


Sign in / Sign up

Export Citation Format

Share Document