Underlying Mechanisms of Allopurinol in Eliminating Renal Toxicity Induced by Melamine–Uric Acid Complex Formation: A Computational Study

Author(s):  
Krishna Gopal Chattaraj ◽  
Sandip Paul
1967 ◽  
Vol 13 (11) ◽  
pp. 985-993 ◽  
Author(s):  
Ronald H Laessig ◽  
Chester E Underwood ◽  
Barbara J Basteyns

Abstract An automated colorimetric microprocedure, suitable for screening purposes, has been developed for the determination of blood uric acid levels. The method uses 2O-µl. whole-blood (capillary) samples and is based on the AutoAnalyzer measurement of the absorbance of the colored uric acid-phosphotungstic acid complex. The dilution inherent in the sampling procedure necessitated a modification of the existing AutoAnalyzer method to increase the sensitivity. The proposed method is evaluated for precision and accuracy by comparison with the standard AutoAnalyzer macro-method.


2015 ◽  
Vol 63 (16) ◽  
pp. 4202-4210 ◽  
Author(s):  
Emily Oluwaseun Arijaje ◽  
Ya-Jane Wang

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Magnus Creed ◽  
Marta Szulik ◽  
Ryan Bia ◽  
Chris Tracy ◽  
Aman Makaju ◽  
...  

Among the metabolic shifts in chronic heart failure is a dysregulation of purine metabolism, which has been shown to negatively impact patient outcomes, especially in individuals affected by hypertension, diabetes, and congestive heart failure, via increased serum uric acid levels and cellular oxidative stress. The underlying mechanisms which drive these changes in purine metabolism in the cardiomyocyte and ultimately reactive oxygen species and uric acid accumulation in heart failure patients remain largely unknown. We recently discovered that the methyltransferase Smyd1 interacts with the metabolic enzyme Adss (Adenylosuccinate synthetase), a key component of purine metabolism in the heart involved in AMP synthesis, via co-immunoprecipitation. We confirmed this novel interaction between Smyd1b and Adss in mouse heart and cultured primary cardiomyocytes, which is further enhanced during phenylephrine-induced hypertrophy in the latter. Our hypothesis was that Smyd1b methylates Adss to regulate its activity, therefore, we examined lysine methylation on Adss via western blotting and mass spectrometry and quantified its ability to convert IMP to sAMP in vitro in the presence and absence of Smyd1b. Using a pan-methylation antibody we initially detected di- and tri-methylation on Adss which was increased in the presence of Smyd1b. Then utilizing bottom-up proteomics, we achieved 98% sequence coverage of Adss via mass spectrometry and identified trimethylation on K373 only in the presence of Smyd1b. In addition, utilizing an enzymatic assay in vitro we have shown that Smyd1b enhances the activity of Adss as it converts IMP to s-AMP. While it has been well-established that the activities of metabolic enzymes are modulated via post-translational modifications (e.g. phosphorylation, acetylation), we believe this is the first report of a metabolic enzyme regulated by lysine methylation. These exciting results highlight a novel role for Smyd1b in regulating purine metabolism in the myocyte and begin to lay the groundwork for examining this mechanism in the setting of disease.


Clay Minerals ◽  
1967 ◽  
Vol 7 (2) ◽  
pp. 167-176 ◽  
Author(s):  
W. Bodenheimer ◽  
L. Heller

AbstractSorption of an acidic, amphoteric, sulphur containing and basic α-amino-acid (glutamic acid, glycine, methionine and lysine) by copper montmorillonite was studied by chemical and X-ray methods. With glutamic acid complex formation occurs only in solution but increasing basicity of the aminoacid favours complex formation in the clay interlayers.


Author(s):  
Xiaoying Han ◽  
Jing Yang ◽  
Dong Li ◽  
Zewei Guo

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated mortality worldwide. Although the mechanisms of HCC progression are not well understood, recent studies demonstrated the potential contribution of uric acid transporter SLC2A9 to tumor suppression. However, the roles and underlying mechanisms are still unknown. We aimed to study the roles and mechanisms of SLC2A9 in HCC. The present study showed that SLC2A9 expression was decreased in human HCC tissues and cell lines. In addition, overexpression of SLC2A9 inhibited HCC cell proliferation. SCL2A9 induced HCC cell apoptosis by inhibiting the expression of caspase 3. Our study also revealed that upregulation of SLC2A9 reduced intracellular reactive oxygen species (ROS) accumulation. Furthermore, SLC2A9 increased the mRNA and protein expression of tumor suppressor p53 in HCC cells. Probenecid inhibits SLC2A9-mediated uric acid transport, which promotes cell proliferation, inhibits cell apoptosis, induces intracellular ROS, and decreases the expression of p53 in HCC cells. Therefore, the present study demonstrated that SLC2A9 may be a novel tumor suppressor gene and a potential therapeutic target in HCC.


2017 ◽  
Vol 114 (28) ◽  
pp. 7408-7413 ◽  
Author(s):  
Yan Jin ◽  
Yaohui Chen ◽  
Shimin Zhao ◽  
Kun-Liang Guan ◽  
Yuan Zhuang ◽  
...  

The involvement of host factors is critical to our understanding of underlying mechanisms of transposition and the applications of transposon-based technologies. Modified piggyBac (PB) is one of the most potent transposon systems in mammals. However, varying transposition efficiencies of PB among different cell lines have restricted its application. We discovered that the DNA–PK complex facilitates PB transposition by binding to PB transposase (PBase) and promoting paired-end complex formation. Mass spectrometry analysis and coimmunoprecipitation revealed physical interaction between PBase and the DNA–PK components Ku70, Ku80, and DNA-PKcs. Overexpression or knockdown of DNA–PK components enhances or suppresses PB transposition in tissue culture cells, respectively. Furthermore, germ-line transposition efficiency of PB is significantly reduced in Ku80 heterozygous mutant mice, confirming the role of DNA–PK in facilitating PB transposition in vivo. Fused dimer PBase can efficiently promote transposition. FRET experiments with tagged dimer PBase molecules indicated that DNA–PK promotes the paired-end complex formation of the PB transposon. These data provide a mechanistic explanation for the role of DNA–PK in facilitating PB transposition and suggest a transposition-promoting manipulation by enhancing the interaction of the PB ends. Consistent with this, deletions shortening the distance between the two PB ends, such as PB vectors with closer ends (PB-CE vectors), have a profound effect on transposition efficiency. Taken together, our study indicates that in addition to regulating DNA repair fidelity during transposition, DNA–PK also affects transposition efficiency by promoting paired-end complex formation. The approach of CE vectors provides a simple practical solution for designing efficient transposon vectors.


Sign in / Sign up

Export Citation Format

Share Document