scholarly journals N, S, P-Codoped Graphene-Supported Ag-MnFe2O4 Heterojunction Nanoparticles as Bifunctional Oxygen Electrocatalyst with High Efficiency

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1550
Author(s):  
Hongzhou Dong ◽  
Yingjie Chen ◽  
Chong Gong ◽  
Lina Sui ◽  
Qiong Sun ◽  
...  

Due to slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharging and charging processes, it is essential to rationally design and synthesize non-precious metal bifunctional electrocatalysts with good performance for metal-air batteries. Herein, Ag-MnFe2O4 heterojunction nanoparticles supported on N, S, P-codoped graphene (NSPG) are developed with enhanced ORR and OER bifunctional electrocatalytic activities and stability. In contrast, S, P-doped graphene (SPG) and N, P-doped graphene (NPG) show less stabilization for the heterojunction particles. For example, under alkaline conditions, the ORR half-wave potential of Ag-MnFe2O4/NSPG can reach 0.831 V, and the over potential for OER is 0.56 V at the current density 10 mA·cm−2. Furthermore, Ag-MnFe2O4/NSPG shows better methanol resistance and durability than Pt/C catalysts.

2020 ◽  
Vol 8 (39) ◽  
pp. 20612-20620
Author(s):  
Shivaraju Guddehalli Chandrappa ◽  
Prabu Moni ◽  
Dehong Chen ◽  
Guruprakash Karkera ◽  
Kunkanadu R. Prakasha ◽  
...  

The rechargeable zinc–air battery is a clean technology for energy storage applications but is impeded by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during its cycling.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 695 ◽  
Author(s):  
Mengjie Zhang ◽  
Wenchang Zhu ◽  
Xingzhe Yang ◽  
Meng Feng ◽  
Hongbin Feng

Few-layer exfoliated black phosphorus (Ex-BP) has attracted tremendous attention owing to its promising applications, including in electrocatalysis. However, it remains a challenge to directly use few-layer Ex-BP as oxygen-involved electrocatalyst because it is quite difficult to restrain structural degradation caused by spontaneous oxidation and keep it stable. Here, a robust carbon-stabilization strategy has been implemented to prepare carbon-coated Ex-BP/N-doped graphene nanosheet (Ex-BP/NGS@C) nanostructures at room temperature, which exhibit superior oxygen evolution reaction (OER) activity under alkaline conditions. Specifically, the as-synthesized Ex-BP/NGS@C hybrid presents a low overpotential of 257 mV at a current density of 10 mA cm−2 with a small Tafel slope of 52 mV dec−1 and shows high durability after long-term testing.


2021 ◽  
Author(s):  
Song-Jeng Isaac Huang ◽  
Adil Muneeb ◽  
Sabhapathy Palani ◽  
Anjaiah Sheelam ◽  
Bayikadi Khasimsaheb ◽  
...  

Developing a non-precious metal electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is desirable for low-cost energy conversion devices. Herein, we designed and developed a new class...


2016 ◽  
Vol 9 (5) ◽  
pp. 1771-1782 ◽  
Author(s):  
A. T. Swesi ◽  
J. Masud ◽  
M. Nath

Ni3Se2 has been identified as a high-efficiency oxygen evolution catalyst with low onset potential and extended stability under alkaline conditions.


2016 ◽  
Vol 7 (5) ◽  
pp. 3364-3369 ◽  
Author(s):  
Kenichi Shimizu ◽  
Lior Sepunaru ◽  
Richard G. Compton

A bifunctional fuel cell catalyst system demonstrated herein overcomes the slow kinetics of the oxygen reduction reaction by rapid heterogeneous disproportionation of hydrogen peroxide.


Author(s):  
Jiacheng Li ◽  
Wanqing Li ◽  
Hongwei Mi ◽  
Yongliang Li ◽  
Libo Deng ◽  
...  

The development of high-efficiency and durable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts as air cathodes is still a challenge in energy storage and conversion. In...


Nanoscale ◽  
2014 ◽  
Vol 6 (24) ◽  
pp. 15066-15072 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Yizhong Lu ◽  
Xiaodan Wang ◽  
Yu Bao ◽  
Wei Chen ◽  
...  

Effective preparation of a high-performance non-precious metal oxygen reduction electrocatalyst (a Co–N complex on 3D N-doped graphene) by a facile method from low-cost raw materials.


2008 ◽  
Vol 73 (6) ◽  
pp. 641-654 ◽  
Author(s):  
Nevenka Elezovic ◽  
Biljana Babic ◽  
Nedeljko Krstajic ◽  
Snezana Gojkovic ◽  
Ljiljana Vracar

The temperature dependence of oxygen reduction reaction (ORR) was studied on highly dispersed Pt nanoparticles supported on a carbon cryo-gel. The specific surface area of the support was 517 m2 g-1, the Pt particles diameter was about 2.7 nm and the loading of the catalyst was 20 wt.%. The kinetics of the ORR at the Pt/C electrode was examined in 0.50 mol dm-3 HClO4 solution in the temperature range from 274 to 318 K. At all temperatures, two distinct E-log j regions were observed; at low current densities with a slope of -2.3RT/F and at high current densities with a slope of -2.3?2RT/F. In order to confirm the mechanism of oxygen reduction previously suggested at a polycrystalline Pt and a Pt/Ebonex nanostructured electrode, the apparent enthalpies of activation at selected potentials vs. the reversible hydrogen electrode were calculated in both current density regions. Although ?H ?a,1 > ?H ?a,h , it was a,1 a, h found that the enthalpies of activation at the zero Galvani potential difference were the same and hence it could be concluded that the rate-determining step of the ORR was the same in both current density regions. The synthesized Pt/C catalyst showed a small enhancement in the catalytic activity for ORR in comparison to the polycrystalline Pt, but no change in the mechanism of the reaction.


Sign in / Sign up

Export Citation Format

Share Document